时间:2021-07-01 10:21:17 帮助过:42人阅读
MIT口语系统研究组Rob Kassel收集,斯坦福大学人工智能实验室Ben Taskar预处理OCR数据集(http://ai.stanford.edu/~btaskar/ocr/ ),包含大量单独手写小写字母,每个样本对应16X8像素二值图像。字线组合序列,序列对应单词。6800个,长度不超过14字母的单词。gzip压缩,内容用Tab分隔文本文件。Python csv模块直接读取。文件每行一个归一化字母属性,ID号、标签、像素值、下一字母ID号等。
下一字母ID值排序,按照正确顺序读取每个单词字母。收集字母,直到下一个ID对应字段未被设置为止。读取新序列。读取完目标字母及数据像素,用零图像填充序列对象,能纳入两个较大目标字母所有像素数据NumPy数组。
时间步之间共享softmax层。数据和目标数组包含序列,每个目标字母对应一个图像帧。RNN扩展,每个字母输出添加softmax分类器。分类器对每帧数据而非整个序列评估预测结果。计算序列长度。一个softmax层添加到所有帧:或者为所有帧添加几个不同分类器,或者令所有帧共享同一个分类器。共享分类器,权值在训练中被调整次数更多,训练单词每个字母。一个全连接层权值矩阵维数batch_size*in_size*out_size。现需要在两个输入维度batch_size、sequence_steps更新权值矩阵。令输入(RNN输出活性值)扁平为形状batch_size*sequence_steps*in_size。权值矩阵变成较大的批数据。结果反扁平化(unflatten)。
代价函数,序列每一帧有预测目标对,在相应维度平均。依据张量长度(序列最大长度)归一化的tf.reduce_mean无法使用。需要按照实际序列长度归一化,手工调用tf.reduce_sum和除法运算均值。
损失函数,tf.argmax针对轴2非轴1,各帧填充,依据序列实际长度计算均值。tf.reduce_mean对批数据所有单词取均值。
TensorFlow自动导数计算,可使用序列分类相同优化运算,只需要代入新代价函数。对所有RNN梯度裁剪,防止训练发散,避免负面影响。
训练模型,get_sataset下载手写体图像,预处理,小写字母独热编码向量。随机打乱数据顺序,分偏划分训练集、测试集。
单词相邻字母存在依赖关系(或互信息),RNN保存同一单词全部输入信息到隐含活性值。前几个字母分类,网络无大量输入推断额外信息,双向RNN(bidirectional RNN)克服缺陷。
两个RNN观测输入序列,一个按照通常顺序从左端读取单词,另一个按照相反顺序从右端读取单词。每个时间步得到两个输出活性值。送入共享softmax层前,拼接。分类器从每个字母获取完整单词信息。tf.modle.rnn.bidirectional_rnn已实现。
实现双向RNN。划分预测属性到两个函数,只关注较少内容。_shared_softmax函数,传入函数张量data推断输入尺寸。复用其他架构函数,相同扁平化技巧在所有时间步共享同一个softmax层。rnn.dynamic_rnn创建两个RNN。
序列反转,比实现新反向传递RNN运算容易。tf.reverse_sequence函数反转帧数据中sequence_lengths帧。数据流图节点有名称。scope参数是rnn_dynamic_cell变量scope名称,默认值RNN。两个参数不同RNN,需要不同域。
反转序列送入后向RNN,网络输出反转,和前向输出对齐。沿RNN神经元输出维度拼接两个张量,返回。双向RNN模型性能更优。
import gzipimport csvimport numpy as npfrom helpers import downloadclass OcrDataset: URL = 'http://ai.stanford.edu/~btaskar/ocr/letter.data.gz'def __init__(self, cache_dir): path = download(type(self).URL, cache_dir) lines = self._read(path) data, target = self._parse(lines) self.data, self.target = self._pad(data, target) @staticmethoddef _read(filepath): with gzip.open(filepath, 'rt') as file_: reader = csv.reader(file_, delimiter='\t') lines = list(reader)return lines @staticmethoddef _parse(lines): lines = sorted(lines, key=lambda x: int(x[0])) data, target = [], [] next_ = Nonefor line in lines:if not next_: data.append([]) target.append([])else:assert next_ == int(line[0]) next_ = int(line[2]) if int(line[2]) > -1 else None pixels = np.array([int(x) for x in line[6:134]]) pixels = pixels.reshape((16, 8)) data[-1].append(pixels) target[-1].append(line[1])return data, target @staticmethoddef _pad(data, target): max_length = max(len(x) for x in target) padding = np.zeros((16, 8)) data = [x + ([padding] * (max_length - len(x))) for x in data] target = [x + ([''] * (max_length - len(x))) for x in target]return np.array(data), np.array(target)import tensorflow as tffrom helpers import lazy_propertyclass SequenceLabellingModel:def __init__(self, data, target, params): self.data = data self.target = target self.params = params self.prediction self.cost self.error self.optimize @lazy_propertydef length(self): used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2)) length = tf.reduce_sum(used, reduction_indices=1) length = tf.cast(length, tf.int32)return length @lazy_propertydef prediction(self): output, _ = tf.nn.dynamic_rnn( tf.nn.rnn_cell.GRUCell(self.params.rnn_hidden), self.data, dtype=tf.float32, sequence_length=self.length, )# Softmax layer.max_length = int(self.target.get_shape()[1]) num_classes = int(self.target.get_shape()[2]) weight = tf.Variable(tf.truncated_normal( [self.params.rnn_hidden, num_classes], stddev=0.01)) bias = tf.Variable(tf.constant(0.1, shape=[num_classes]))# Flatten to apply same weights to all time steps.output = tf.reshape(output, [-1, self.params.rnn_hidden]) prediction = tf.nn.softmax(tf.matmul(output, weight) + bias) prediction = tf.reshape(prediction, [-1, max_length, num_classes])return prediction @lazy_propertydef cost(self):# Compute cross entropy for each frame.cross_entropy = self.target * tf.log(self.prediction) cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2) mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2)) cross_entropy *= mask# Average over actual sequence lengths.cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1) cross_entropy /= tf.cast(self.length, tf.float32)return tf.reduce_mean(cross_entropy) @lazy_propertydef error(self): mistakes = tf.not_equal( tf.argmax(self.target, 2), tf.argmax(self.prediction, 2)) mistakes = tf.cast(mistakes, tf.float32) mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2)) mistakes *= mask# Average over actual sequence lengths.mistakes = tf.reduce_sum(mistakes, reduction_indices=1) mistakes /= tf.cast(self.length, tf.float32)return tf.reduce_mean(mistakes) @lazy_propertydef optimize(self): gradient = self.params.optimizer.compute_gradients(self.cost)try: limit = self.params.gradient_clipping gradient = [ (tf.clip_by_value(g, -limit, limit), v)if g is not None else (None, v)for g, v in gradient]except AttributeError:print('No gradient clipping parameter specified.') optimize = self.params.optimizer.apply_gradients(gradient)return optimizeimport randomimport tensorflow as tfimport numpy as npfrom helpers import AttrDictfrom OcrDataset import OcrDatasetfrom SequenceLabellingModel import SequenceLabellingModelfrom batched import batched params = AttrDict( rnn_cell=tf.nn.rnn_cell.GRUCell, rnn_hidden=300, optimizer=tf.train.RMSPropOptimizer(0.002), gradient_clipping=5, batch_size=10, epochs=5, epoch_size=50)def get_dataset(): dataset = OcrDataset('./ocr')# Flatten images into vectors.dataset.data = dataset.data.reshape(dataset.data.shape[:2] + (-1,))# One-hot encode targets.target = np.zeros(dataset.target.shape + (26,))for index, letter in np.ndenumerate(dataset.target):if letter: target[index][ord(letter) - ord('a')] = 1dataset.target = target# Shuffle order of examples.order = np.random.permutation(len(dataset.data)) dataset.data = dataset.data[order] dataset.target = dataset.target[order]return dataset# Split into training and test data.dataset = get_dataset() split = int(0.66 * len(dataset.data)) train_data, test_data = dataset.data[:split], dataset.data[split:] train_target, test_target = dataset.target[:split], dataset.target[split:]# Compute graph._, length, image_size = train_data.shape num_classes = train_target.shape[2] data = tf.placeholder(tf.float32, [None, length, image_size]) target = tf.placeholder(tf.float32, [None, length, num_classes]) model = SequenceLabellingModel(data, target, params) batches = batched(train_data, train_target, params.batch_size) sess = tf.Session() sess.run(tf.initialize_all_variables())for index, batch in enumerate(batches): batch_data = batch[0] batch_target = batch[1] epoch = batch[2]if epoch >= params.epochs:breakfeed = {data: batch_data, target: batch_target} error, _ = sess.run([model.error, model.optimize], feed)print('{}: {:3.6f}%'.format(index + 1, 100 * error)) test_feed = {data: test_data, target: test_target} test_error, _ = sess.run([model.error, model.optimize], test_feed)print('Test error: {:3.6f}%'.format(100 * error))import tensorflow as tffrom helpers import lazy_propertyclass BidirectionalSequenceLabellingModel:def __init__(self, data, target, params): self.data = data self.target = target self.params = params self.prediction self.cost self.error self.optimize @lazy_propertydef length(self): used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2)) length = tf.reduce_sum(used, reduction_indices=1) length = tf.cast(length, tf.int32)return length @lazy_propertydef prediction(self): output = self._bidirectional_rnn(self.data, self.length) num_classes = int(self.target.get_shape()[2]) prediction = self._shared_softmax(output, num_classes)return predictiondef _bidirectional_rnn(self, data, length): length_64 = tf.cast(length, tf.int64) forward, _ = tf.nn.dynamic_rnn( cell=self.params.rnn_cell(self.params.rnn_hidden), inputs=data, dtype=tf.float32, sequence_length=length, scope='rnn-forward') backward, _ = tf.nn.dynamic_rnn( cell=self.params.rnn_cell(self.params.rnn_hidden), inputs=tf.reverse_sequence(data, length_64, seq_dim=1), dtype=tf.float32, sequence_length=self.length, scope='rnn-backward') backward = tf.reverse_sequence(backward, length_64, seq_dim=1) output = tf.concat(2, [forward, backward])return outputdef _shared_softmax(self, data, out_size): max_length = int(data.get_shape()[1]) in_size = int(data.get_shape()[2]) weight = tf.Variable(tf.truncated_normal( [in_size, out_size], stddev=0.01)) bias = tf.Variable(tf.constant(0.1, shape=[out_size]))# Flatten to apply same weights to all time steps.flat = tf.reshape(data, [-1, in_size]) output = tf.nn.softmax(tf.matmul(flat, weight) + bias) output = tf.reshape(output, [-1, max_length, out_size])return output @lazy_propertydef cost(self):# Compute cross entropy for each frame.cross_entropy = self.target * tf.log(self.prediction) cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2) mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2)) cross_entropy *= mask# Average over actual sequence lengths.cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1) cross_entropy /= tf.cast(self.length, tf.float32)return tf.reduce_mean(cross_entropy) @lazy_propertydef error(self): mistakes = tf.not_equal( tf.argmax(self.target, 2), tf.argmax(self.prediction, 2)) mistakes = tf.cast(mistakes, tf.float32) mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2)) mistakes *= mask# Average over actual sequence lengths.mistakes = tf.reduce_sum(mistakes, reduction_indices=1) mistakes /= tf.cast(self.length, tf.float32)return tf.reduce_mean(mistakes) @lazy_propertydef optimize(self): gradient = self.params.optimizer.compute_gradients(self.cost)try: limit = self.params.gradient_clipping gradient = [ (tf.clip_by_value(g, -limit, limit), v)if g is not None else (None, v)for g, v in gradient]except AttributeError:print('No gradient clipping parameter specified.') optimize = self.params.optimizer.apply_gradients(gradient)return optimize
参考资料:
《面向机器智能的TensorFlow实践》
欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz
以上就是序列标注、手写小写字母OCR数据集、双向RNN的详细内容,更多请关注Gxl网其它相关文章!