时间:2021-07-01 10:21:17 帮助过:537人阅读
导入命令
- 1)设置工作环境%cd "F:\\Dropbox\\python"2)导入程序包import matplotlib.pyplot as plt
- import numpy as np
- from matplotlib.image import BboxImage
- from matplotlib._png import read_png
- import matplotlib.colors
- from matplotlib.cbook import get_sample_data
- import pandas as pd3)读取数据data=pd.read_csv("CAR.csv")4)定义并绘制图像
- class RibbonBox(object):original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png",asfileobj=False))cut_location = 70
- b_and_h = original_image[:,:,2]
- color = original_image[:,:,2] - original_image[:,:,0]
- alpha = original_image[:,:,3]
- nx = original_image.shape[1]def __init__(self, color):
- rgb = matplotlib.colors.colorConverter.to_rgb(color)im = np.empty(self.original_image.shape,
- self.original_image.dtype)im[:,:,:3] = self.b_and_h[:,:,np.newaxis]
- im[:,:,:3] -= self.color[:,:,np.newaxis]*(1.-np.array(rgb))
- im[:,:,3] = self.alphaself.im = imdef get_stretched_image(self, stretch_factor):
- stretch_factor = max(stretch_factor, 1)
- ny, nx, nch = self.im.shape
- ny2 = int(ny*stretch_factor)stretched_image = np.empty((ny2, nx, nch),
- self.im.dtype)
- cut = self.im[self.cut_location,:,:]
- stretched_image[:,:,:] = cut
- stretched_image[:self.cut_location,:,:] = \
- self.im[:self.cut_location,:,:]
- stretched_image[-(ny-self.cut_location):,:,:] = \
- self.im[-(ny-self.cut_location):,:,:]self._cached_im = stretched_image
- return stretched_image
- class RibbonBoxImage(BboxImage):
- zorder = 1def __init__(self, bbox, color,
- cmap = None,
- norm = None,
- interpolation=None,
- origin=None,
- filternorm=1,
- filterrad=4.0,
- resample = False,
- **kwargs
- ):BboxImage.__init__(self, bbox,
- cmap = cmap,
- norm = norm,
- interpolation=interpolation,
- origin=origin,
- filternorm=filternorm,
- filterrad=filterrad,
- resample = resample,
- **kwargs
- )self._ribbonbox = RibbonBox(color)
- self._cached_ny = Nonedef draw(self, renderer, *args, **kwargs):bbox = self.get_window_extent(renderer)
- stretch_factor = bbox.height / bbox.widthny = int(stretch_factor*self._ribbonbox.nx)
- if self._cached_ny != ny:
- arr = self._ribbonbox.get_stretched_image(stretch_factor)
- self.set_array(arr)
- self._cached_ny = nyBboxImage.draw(self, renderer, *args, **kwargs)if 1:
- from matplotlib.transforms import Bbox, TransformedBbox
- from matplotlib.ticker import ScalarFormatterfig, ax = plt.subplots()years = np.arange(2001,2008)
- box_colors = [(0.8, 0.2, 0.2),
- (0.2, 0.8, 0.2),
- (0.2, 0.2, 0.8),
- (0.7, 0.5, 0.8),
- (0.3, 0.8, 0.7),
- (0.4, 0.6, 0.3),
- (0.5, 0.5, 0.1),
- ]
- heights = data['price']fmt = ScalarFormatter(useOffset=False)
- ax.xaxis.set_major_formatter(fmt)for year, h, bc in zip(years, heights, box_colors):
- bbox0 = Bbox.from_extents(year-0.4, 0., year+0.4, h)
- bbox = TransformedBbox(bbox0, ax.transData)
- rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic")ax.add_artist(rb_patch)
- ax.annotate(h,
- (year, h), va="bottom", ha="center")
- ax.set_title('The Price of Car')patch_gradient = BboxImage(ax.bbox,
- interpolation="bicubic",
- zorder=0.1,
- )
- gradient = np.zeros((2, 2, 4), dtype=np.float)
- gradient[:,:,:3] = [1, 1, 0.]
- gradient[:,:,3] = [[0.1, 0.3],[0.3, 0.5]]
- patch_gradient.set_array(gradient)
- ax.add_artist(patch_gradient)ax.set_xlim(years[0]-0.5, years[-1]+0.5)
- ax.set_ylim(0, 15000)5)保存图像fig.savefig('The Price of Car.png')
- plt.show()
输出图像如下
以上就是【Python教程】绘制漂亮的柱状图的内容,更多相关内容请关注PHP中文网(www.gxlcms.com)!