当前位置:Gxlcms > Python > Python的MongoDB模块PyMongo操作方法集锦

Python的MongoDB模块PyMongo操作方法集锦

时间:2021-07-01 10:21:17 帮助过:39人阅读

开始之前当然要导入模块啦:

>>> import pymongo

下一步,必须本地mongodb服务器的安装和启动已经完成,才能继续下去。

建立于MongoClient 的连接:

client = MongoClient('localhost', 27017)
# 或者
client = MongoClient('mongodb://localhost:27017/')

得到数据库:

>>> db = client.test_database
# 或者
>>> db = client['test-database']

得到一个数据集合:

collection = db.test_collection
# 或者
collection = db['test-collection']

MongoDB中的数据使用的是类似Json风格的文档:

>>> import datetime
>>> post = {"author": "Mike",
...     "text": "My first blog post!",
...     "tags": ["mongodb", "python", "pymongo"],
...     "date": datetime.datetime.utcnow()}

插入一个文档:

>>> posts = db.posts
>>> post_id = posts.insert_one(post).inserted_id
>>> post_id
ObjectId('...')

找一条数据:

>>> posts.find_one()
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

>>> posts.find_one({"author": "Mike"})
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

>>> posts.find_one({"author": "Eliot"})
>>>

通过ObjectId来查找:

>>> post_id
ObjectId(...)
>>> posts.find_one({"_id": post_id})
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

不要转化ObjectId的类型为String:

>>> post_id_as_str = str(post_id)
>>> posts.find_one({"_id": post_id_as_str}) # No result
>>>

如果你有一个post_id字符串,怎么办呢?

from bson.objectid import ObjectId

# The web framework gets post_id from the URL and passes it as a string
def get(post_id):
  # Convert from string to ObjectId:
  document = client.db.collection.find_one({'_id': ObjectId(post_id)})

多条插入:

>>> new_posts = [{"author": "Mike",
...        "text": "Another post!",
...        "tags": ["bulk", "insert"],
...        "date": datetime.datetime(2009, 11, 12, 11, 14)},
...       {"author": "Eliot",
...        "title": "MongoDB is fun",
...        "text": "and pretty easy too!",
...        "date": datetime.datetime(2009, 11, 10, 10, 45)}]
>>> result = posts.insert_many(new_posts)
>>> result.inserted_ids
[ObjectId('...'), ObjectId('...')]

查找多条数据:

>>> for post in posts.find():
...  post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}

当然也可以约束查找条件:

>>> for post in posts.find({"author": "Mike"}):
...  post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

获取集合的数据条数:

>>> posts.count()

或者说满足某种查找条件的数据条数:

>>> posts.find({"author": "Mike"}).count()

范围查找,比如说时间范围:

>>> d = datetime.datetime(2009, 11, 12, 12)
>>> for post in posts.find({"date": {"$lt": d}}).sort("author"):
...  print post
...
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

$lt是小于的意思。

如何建立索引呢?比如说下面这个查找:

>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BasicCursor'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

建立索引:

>>> from pymongo import ASCENDING, DESCENDING
>>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)])
u'date_-1_author_1'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BtreeCursor date_-1_author_1'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]


连接聚集

>>> account = db.Account
#或 
>>> account = db["Account"]

查看全部聚集名称

>>> db.collection_names()

查看聚集的一条记录

>>> db.Account.find_one()
 

>>> db.Account.find_one({"UserName":"keyword"})

查看聚集的字段

>>> db.Account.find_one({},{"UserName":1,"Email":1})
{u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'libing@35.cn'}
 

>>> db.Account.find_one({},{"UserName":1,"Email":1,"_id":0})
{u'UserName': u'libing', u'Email': u'libing@35.cn'}

查看聚集的多条记录

>>> for item in db.Account.find():
    item
 

>>> for item in db.Account.find({"UserName":"libing"}):
    item["UserName"]

查看聚集的记录统计

>>> db.Account.find().count()
 

>>> db.Account.find({"UserName":"keyword"}).count()

聚集查询结果排序

>>> db.Account.find().sort("UserName") #默认为升序
>>> db.Account.find().sort("UserName",pymongo.ASCENDING)  #升序
>>> db.Account.find().sort("UserName",pymongo.DESCENDING) #降序

聚集查询结果多列排序

>>> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])

添加记录

>>> db.Account.insert({"AccountID":21,"UserName":"libing"})

修改记录

>>> db.Account.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})

删除记录

>>> db.Account.remove()  -- 全部删除
 

>>> db.Test.remove({"UserName":"keyword"})

人气教程排行