时间:2021-07-01 10:21:17 帮助过:59人阅读
- import cPickle as pickle
- # dumps and loads
- # 将内存对象dump为字符串,或者将字符串load为内存对象
- def test_dumps_and_loads():
- t = {'name': ['v1', 'v2']}
- print t
- o = pickle.dumps(t)
- print o
- print 'len o: ', len(o)
- p = pickle.loads(o)
- print p
- # 关于HIGHEST_PROTOCOL参数,pickle 支持3种protocol,0、1、2:
- # http://stackoverflow.com/questions/23582489/python-pickle-protocol-choice
- # 0:ASCII protocol,兼容旧版本的Python
- # 1:binary format,兼容旧版本的Python
- # 2:binary format,Python2.3 之后才有,更好的支持new-sytle class
- def test_dumps_and_loads_HIGHEST_PROTOCOL():
- print 'HIGHEST_PROTOCOL: ', pickle.HIGHEST_PROTOCOL
- t = {'name': ['v1', 'v2']}
- print t
- o = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
- print 'len o: ', len(o)
- p = pickle.loads(o)
- print p
- # new-style class
- def test_new_sytle_class():
- class TT(object):
- def __init__(self, arg, **kwargs):
- super(TT, self).__init__()
- self.arg = arg
- self.kwargs = kwargs
- def test(self):
- print self.arg
- print self.kwargs
- # ASCII protocol
- t = TT('test', a=1, b=2)
- o1 = pickle.dumps(t)
- print o1
- print 'o1 len: ', len(o1)
- p = pickle.loads(o1)
- p.test()
- # HIGHEST_PROTOCOL对new-style class支持更好,性能更高
- o2 = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
- print 'o2 len: ', len(o2)
- p = pickle.loads(o2)
- p.test()
- # dump and load
- # 将内存对象序列化后直接dump到文件或支持文件接口的对象中
- # 对于dump,需要支持write接口,接受一个字符串作为输入参数,比如:StringIO
- # 对于load,需要支持read接口,接受int输入参数,同时支持readline接口,无输入参数,比如StringIO
- # 使用文件,ASCII编码
- def test_dump_and_load_with_file():
- t = {'name': ['v1', 'v2']}
- # ASCII format
- with open('test.txt', 'w') as fp:
- pickle.dump(t, fp)
- with open('test.txt', 'r') as fp:
- p = pickle.load(fp)
- print p
- # 使用文件,二进制编码
- def test_dump_and_load_with_file_HIGHEST_PROTOCOL():
- t = {'name': ['v1', 'v2']}
- with open('test.bin', 'wb') as fp:
- pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)
- with open('test.bin', 'rb') as fp:
- p = pickle.load(fp)
- print p
- # 使用StringIO,二进制编码
- def test_dump_and_load_with_StringIO():
- import StringIO
- t = {'name': ['v1', 'v2']}
- fp = StringIO.StringIO()
- pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)
- fp.seek(0)
- p = pickle.load(fp)
- print p
- fp.close()
- # 使用自定义类
- # 这里演示用户自定义类,只要实现了write、read、readline接口,
- # 就可以用作dump、load的file参数
- def test_dump_and_load_with_user_def_class():
- import StringIO
- class FF(object):
- def __init__(self):
- self.buf = StringIO.StringIO()
- def write(self, s):
- self.buf.write(s)
- print 'len: ', len(s)
- def read(self, n):
- return self.buf.read(n)
- def readline(self):
- return self.buf.readline()
- def seek(self, pos, mod=0):
- return self.buf.seek(pos, mod)
- def close(self):
- self.buf.close()
- fp = FF()
- t = {'name': ['v1', 'v2']}
- pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)
- fp.seek(0)
- p = pickle.load(fp)
- print p
- fp.close()
- # Pickler/Unpickler
- # Pickler(file, protocol).dump(obj) 等价于 pickle.dump(obj, file[, protocol])
- # Unpickler(file).load() 等价于 pickle.load(file)
- # Pickler/Unpickler 封装性更好,可以很方便的替换file
- def test_pickler_unpickler():
- t = {'name': ['v1', 'v2']}
- f = file('test.bin', 'wb')
- pick = pickle.Pickler(f, pickle.HIGHEST_PROTOCOL)
- pick.dump(t)
- f.close()
- f = file('test.bin', 'rb')
- unpick = pickle.Unpickler(f)
- p = unpick.load()
- print p
- f.close()
pickle.dump(obj, file[, protocol])
这是将对象持久化的方法,参数的含义分别为:
对象被持久化后怎么还原呢?pickle 模块也提供了相应的方法,如下:
pickle.load(file)
只有一个参数 file ,对应于上面 dump 方法中的 file 参数。这个 file 必须是一个拥有一个能接收一个整数为参数的 read() 方法以及一个不接收任何参数的 readline() 方法,并且这两个方法的返回值都应该是字符串。这可以是一个打开为读的文件对象、StringIO 对象或其他任何满足条件的对象。
下面是一个基本的用例:
- # -*- coding: utf-8 -*-
- import pickle
- # 也可以这样:
- # import cPickle as pickle
- obj = {"a": 1, "b": 2, "c": 3}
- # 将 obj 持久化保存到文件 tmp.txt 中
- pickle.dump(obj, open("tmp.txt", "w"))
- # do something else ...
- # 从 tmp.txt 中读取并恢复 obj 对象
- obj2 = pickle.load(open("tmp.txt", "r"))
- print obj2
- # -*- coding: utf-8 -*-
- import pickle
- # 也可以这样:
- # import cPickle as pickle
- obj = {"a": 1, "b": 2, "c": 3}
- # 将 obj 持久化保存到文件 tmp.txt 中
- pickle.dump(obj, open("tmp.txt", "w"))
- # do something else ...
- # 从 tmp.txt 中读取并恢复 obj 对象
- obj2 = pickle.load(open("tmp.txt", "r"))
- print obj2
不过实际应用中,我们可能还会有一些改进,比如用 cPickle 来代替 pickle ,前者是后者的一个 C 语言实现版本,拥有更快的速度,另外,有时在 dump 时也会将第三个参数设为 True 以提高压缩比。再来看下面的例子:
- # -*- coding: utf-8 -*-
- import cPickle as pickle
- import random
- import os
- import time
- LENGTH = 1024 * 10240
- def main():
- d = {}
- a = []
- for i in range(LENGTH):
- a.append(random.randint(0, 255))
- d["a"] = a
- print "dumping..."
- t1 = time.time()
- pickle.dump(d, open("tmp1.dat", "wb"), True)
- print "dump1: %.3fs" % (time.time() - t1)
- t1 = time.time()
- pickle.dump(d, open("tmp2.dat", "w"))
- print "dump2: %.3fs" % (time.time() - t1)
- s1 = os.stat("tmp1.dat").st_size
- s2 = os.stat("tmp2.dat").st_size
- print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)
- print "loading..."
- t1 = time.time()
- obj1 = pickle.load(open("tmp1.dat", "rb"))
- print "load1: %.3fs" % (time.time() - t1)
- t1 = time.time()
- obj2 = pickle.load(open("tmp2.dat", "r"))
- print "load2: %.3fs" % (time.time() - t1)
- if __name__ == "__main__":
- main()
- # -*- coding: utf-8 -*-
- import cPickle as pickle
- import random
- import os
- import time
- LENGTH = 1024 * 10240
- def main():
- d = {}
- a = []
- for i in range(LENGTH):
- a.append(random.randint(0, 255))
- d["a"] = a
- print "dumping..."
- t1 = time.time()
- pickle.dump(d, open("tmp1.dat", "wb"), True)
- print "dump1: %.3fs" % (time.time() - t1)
- t1 = time.time()
- pickle.dump(d, open("tmp2.dat", "w"))
- print "dump2: %.3fs" % (time.time() - t1)
- s1 = os.stat("tmp1.dat").st_size
- s2 = os.stat("tmp2.dat").st_size
- print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)
- print "loading..."
- t1 = time.time()
- obj1 = pickle.load(open("tmp1.dat", "rb"))
- print "load1: %.3fs" % (time.time() - t1)
- t1 = time.time()
- obj2 = pickle.load(open("tmp2.dat", "r"))
- print "load2: %.3fs" % (time.time() - t1)
- if __name__ == "__main__":
- main()
在我的电脑上执行结果为:
- dumping…
- dump1: 1.297s
- dump2: 4.750s
- 20992503, 68894198, 30.47%
- loading…
- load1: 2.797s
- load2: 10.125s
可以看到,dump 时如果指定了 protocol 为 True,压缩过后的文件的大小只有原来的文件的 30% ,同时无论在 dump 时还是 load 时所耗费的时间都比原来少。因此,一般来说,可以建议把这个值设为 True 。
另外,pickle 模块还提供 dumps 和 loads 两个方法,用法与上面的 dump 和 load 方法类似,只是不需要输入 file 参数,输入及输出都是字符串对象,有些场景中使用这两个方法可能更为方便。