时间:2021-07-01 10:21:17 帮助过:113人阅读
最近工作上遇到一个需求,将10000左右个点均匀地分布在一个球面上。所谓的均匀,即相邻的两个点之间的距离尽量一致。
我的算法是用基于正多面体剖分球面,我选的是正八面体。
1. 效果图如下:
2.sphere.py代码如下
#!/usr/bin/python # -*- coding: utf-8 -*- import math class Spherical(object): '''球坐标系''' def __init__(self, radial = 1.0, polar = 0.0, azimuthal = 0.0): self.radial = radial self.polar = polar self.azimuthal = azimuthal def toCartesian(self): '''转直角坐标系''' r = math.sin(self.azimuthal) * self.radial x = math.cos(self.polar) * r y = math.sin(self.polar) * r z = math.cos(self.azimuthal) * self.radial return x, y, z def splot(limit): s = Spherical() n = int(math.ceil(math.sqrt((limit - 2) / 4))) azimuthal = 0.5 * math.pi / n for a in range(-n, n + 1): s.polar = 0 size = (n - abs(a)) * 4 or 1 polar = 2 * math.pi / size for i in range(size): yield s.toCartesian() s.polar += polar s.azimuthal += azimuthal for point in splot(input('')): print("%f %f %f" % point)
希望本文所述对大家的Python程序设计有所帮助。