当前位置:Gxlcms > Python > Python找出文件中使用率最高的汉字实例详解

Python找出文件中使用率最高的汉字实例详解

时间:2021-07-01 10:21:17 帮助过:43人阅读

本文实例讲述了Python找出文件中使用率最高的汉字的方法。分享给大家供大家参考。具体分析如下:

这是我初学Python时写的,为了简便,我并没在排序完后再去掉非中文字符,稍微会影响性能(大约增加了25%的时间)。

# -*- coding: gbk -*- 
import codecs 
from time import time 
from operator import itemgetter 
def top_words(filename, size=10, encoding='gbk'): 
  count = {} 
  for line in codecs.open(filename, 'r', encoding): 
    for word in line: 
      if u'\u4E00' <= word <= u'\u9FA5' or u'\uF900' <= word <= u'\uFA2D': 
        count[word] = 1 + count.get(word, 0) 
  top_words = sorted(count.iteritems(), key=itemgetter(1), reverse=True)[:size] 
  print '\n'.join([u'%s : %s次' % (word, times) for word, times in top_words]) 
begin = time() 
top_words('空之境界.txt') 
print '一共耗时 : %s秒' % (time()-begin) 

如果想用上新方法,以及让join的可读性更高的话,这样也是可以的:

# -*- coding: gbk -*- 
import codecs 
from time import time 
from operator import itemgetter 
from heapq import nlargest 
def top_words(filename, size=10, encoding='gbk'): 
  count = {} 
  for line in codecs.open(filename, 'r', encoding): 
    for word in line: 
      if u'\u4E00' <= word <= u'\u9FA5' or u'\uF900' <= word <= u'\uFA2D': 
        count[word] = 1 + count.get(word, 0) 
  top_words = nlargest(size, count.iteritems(), key=itemgetter(1)) 
  for word, times in top_words: 
    print u'%s : %s次' % (word, times) 
begin = time() 
top_words('空之境界.txt') 
print '一共耗时 : %s秒' % (time()-begin) 

或者让行数更少(好囧的列表综合):

# -*- coding: gbk -*- 
import codecs 
from time import time 
from operator import itemgetter 
def top_words(filename, size=10, encoding='gbk'): 
  count = {} 
  for word in [word for word in codecs.open(filename, 'r', encoding).read() if u'\u4E00' <= word <= u'\u9FA5' or u'\uF900' <= word <= u'\uFA2D']: 
    count[word] = 1 + count.get(word, 0) 
  top_words = sorted(count.iteritems(), key=itemgetter(1), reverse=True)[:size] 
  print '\n'.join([u'%s : %s次' % (word, times) for word, times in top_words]) 
begin = time() 
top_words('空之境界.txt') 
print '一共耗时 : %s秒' % (time()-begin) 

此外还可以引入with语句,这样只需一行就能获得异常安全性。
3者性能几乎一样,结果如下:

的 : 17533次
是 : 8581次
不 : 6375次
我 : 6168次
了 : 5586次
一 : 5197次
这 : 4394次
在 : 4264次
有 : 4188次
人 : 4025次
一共耗时 : 0.5秒

引入psyco模块的成绩:

的 : 17533次
是 : 8581次
不 : 6375次
我 : 6168次
了 : 5586次
一 : 5197次
这 : 4394次
在 : 4264次
有 : 4188次
人 : 4025次
一共耗时 : 0.280999898911秒

注:测试文件为778KB的GBK编码,40余万字。

希望本文所述对大家的Python程序设计有所帮助。

人气教程排行