时间:2021-07-01 10:21:17 帮助过:48人阅读
Apache HBase是一个分布式的、面向列的开源数据库,它可以让我们随机的、实时的访问大数据。但是怎样有效的将数据导入到HBase呢?
Apache HBase是一个分布式的、面向列的开源数据库,它可以让我们随机的、实时的访问大数据。但是怎样有效的将数据导入到HBase呢?HBase有多种导入数据的方法,最直接的方法就是在MapReduce作业中使用TableOutputFormat作为输出,或者使用标准的客户端API,但是这些都不是非常有效的方法。
Bulkload利用MapReduce作业输出HBase内部数据格式的表数据,然后将生成的StoreFiles直接导入到集群中。与使用HBase API相比,使用Bulkload导入数据占用更少的CPU和网络资源。
Bulkload过程主要包括三部分:
1.从数据源(通常是文本文件或其他的数据库)提取数据并上传到HDFS
这一步不在HBase的考虑范围内,不管数据源是什么,,只要在进行下一步之前将数据上传到HDFS即可。
2.利用一个MapReduce作业准备数据
这一步需要一个MapReduce作业,并且大多数情况下还需要我们自己编写Map函数,而Reduce函数不需要我们考虑,由HBase提供。该作业需要使用rowkey(行键)作为输出Key,KeyValue、Put或者Delete作为输出Value。MapReduce作业需要使用HFileOutputFormat2来生成HBase数据文件。为了有效的导入数据,需要配置HFileOutputFormat2使得每一个输出文件都在一个合适的区域中。为了达到这个目的,MapReduce作业会使用Hadoop的TotalOrderPartitioner类根据表的key值将输出分割开来。HFileOutputFormat2的方法configureIncrementalLoad()会自动的完成上面的工作。
3.告诉RegionServers数据的位置并导入数据
这一步是最简单的,通常需要使用LoadIncrementalHFiles(更为人所熟知是completebulkload工具),将文件在HDFS上的位置传递给它,它就会利用RegionServer将数据导入到相应的区域。
下图简单明确的说明了整个过程
图片来自How-to: Use HBase Bulk Loading, and Why
Note:在进行BulkLoad之前,要在HBase中创建与程序中同名且结构相同的空表
Java实现如下:
BulkLoadDriver.java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat2;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* Created by shaobo on 15-6-9.
*/
public class BulkLoadDriver extends Configured implements Tool {
private static final String DATA_SEPERATOR = "\\s+";
private static final String TABLE_NAME = "temperature";//表名
private static final String COLUMN_FAMILY_1="date";//列组1
private static final String COLUMN_FAMILY_2="tempPerHour";//列组2
public static void main(String[] args) {
try {
int response = ToolRunner.run(HBaseConfiguration.create(), new BulkLoadDriver(), args);
if(response == 0) {
System.out.println("Job is successfully completed...");
} else {
System.out.println("Job failed...");
}
} catch(Exception exception) {
exception.printStackTrace();
}
}
public int run(String[] args) throws Exception {
String outputPath = args[1];
/**
* 设置作业参数
*/
Configuration configuration = getConf();
configuration.set("data.seperator", DATA_SEPERATOR);
configuration.set("hbase.table.name", TABLE_NAME);
configuration.set("COLUMN_FAMILY_1", COLUMN_FAMILY_1);
configuration.set("COLUMN_FAMILY_2", COLUMN_FAMILY_2);
Job job = Job.getInstance(configuration, "Bulk Loading HBase Table::" + TABLE_NAME);
job.setJarByClass(BulkLoadDriver.class);
job.setInputFormatClass(TextInputFormat.class);
job.setMapOutputKeyClass(ImmutableBytesWritable.class);//指定输出键类
job.setMapOutputValueClass(Put.class);//指定输出值类
job.setMapperClass(BulkLoadMapper.class);//指定Map函数
FileInputFormat.addInputPaths(job, args[0]);//输入路径
FileSystem fs = FileSystem.get(configuration);
Path output = new Path(outputPath);
if (fs.exists(output)) {
fs.delete(output, true);//如果输出路径存在,就将其删除
}
FileOutputFormat.setOutputPath(job, output);//输出路径
Connection connection = ConnectionFactory.createConnection(configuration);
TableName tableName = TableName.valueOf(TABLE_NAME);
HFileOutputFormat2.configureIncrementalLoad(job, connection.getTable(tableName), connection.getRegionLocator(tableName));
job.waitForCompletion(true);
if (job.isSuccessful()){
HFileLoader.doBulkLoad(outputPath, TABLE_NAME);//导入数据
return 0;
} else {
return 1;
}
}
}
BulkLoadMapper.java