时间:2021-07-01 10:21:17 帮助过:26人阅读
事件也是一种在线程间同步的方式。 RTT中,事件是一个32bit(4个字节)的变量,其中每一个位可以表示代表一种事件。接收事件的线程既可以在多个事件同时发生后(即多个bit位同时置1)触发,正如本例中线程1中第一条语句所演示的那样。也可以多个事件任意一个
事件也是一种在线程间同步的方式。
RTT中,事件是一个32bit(4个字节)的变量,其中每一个位可以表示代表一种事件。接收事件的线程既可以在多个事件同时发生后(即多个bit位同时置1)触发,正如本例中线程1中第一条语句所演示的那样。也可以多个事件任意一个发生后(即多个bit位任意一个置位)就可以触发。主程序中创建三个线程,线程1接收事件标志。线程2和线程3则向发送事件标志。可以说,事件更为灵活。
这里,一共创建了三个线程,一个事件。一开始 thread1 等待事件 bit3 和 bit5 发生,并且是 and 方式。thread2 和 thread3 分别发送了bit3 和 bit5 ,thread1收到之后,等待1s 进入下一次等待事件的发生。第二次事件是 or 的方式,即 bit3 和 bit5 只要有一个方式,事件就算发生,这时 thread3 发出 bit5 事件,thread1 收到后停止调度。
程序:
#include结果:#include void rt_init_thread_entry(void *parameter) { } static struct rt_event event; static rt_uint8_t thread1_stack[1024]; struct rt_thread thread1; static void thread1_entry(void *parameter) { rt_uint32_t e; if (rt_event_recv(&event, ((1 << 3) | (1 << 5)), RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &e) == RT_EOK) { rt_kprintf("thread1: AND recv event 0x%x\n", e); } rt_kprintf("thread1: delay 1s to prepare second event.\n"); rt_thread_delay(RT_TICK_PER_SECOND); if (rt_event_recv(&event, ((1 << 3) | (1 << 5)), RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &e) == RT_EOK) { rt_kprintf("thread1: OR recv event 0x%x\n", e); } rt_kprintf("thread1 leave.\n"); } static rt_uint8_t thread2_stack[1024]; struct rt_thread thread2; static void thread2_entry(void *param) { rt_kprintf("thread2: send event1\n"); rt_event_send(&event, (1 << 3)); rt_kprintf("thread2 leave.\n"); } static rt_uint8_t thread3_stack[1024]; struct rt_thread thread3; static void thread3_entry(void *param) { rt_kprintf("thread3: send event2\n"); rt_event_send(&event, (1 << 5)); rt_thread_delay(20); rt_kprintf("thread3: send event2\n"); rt_event_send(&event, (1 << 5)); rt_kprintf("thread3 leave.\n"); } int rt_application_init() { rt_thread_t init_thread; rt_err_t result; result = rt_event_init(&event, "event", RT_IPC_FLAG_FIFO); if (result != RT_EOK) { rt_kprintf("init event failed.\n"); return -1; } init_thread = rt_thread_create("init", rt_init_thread_entry, RT_NULL, 2048, 7, 20); if (init_thread != RT_NULL) rt_thread_startup(init_thread); rt_thread_init(&thread1, "t1", thread1_entry, RT_NULL, &thread1_stack[0], sizeof(thread1_stack), 8, 50); rt_thread_startup(&thread1); rt_thread_init(&thread2, "thread2", thread2_entry, RT_NULL, &thread2_stack[0], sizeof(thread2_stack),9,50); rt_thread_startup(&thread2); rt_thread_init(&thread3, "thread3", thread3_entry, RT_NULL, &thread3_stack[0], sizeof(thread3_stack),10,50); rt_thread_startup(&thread3); return 0; }
thread2: send event1 thread2 leave. thread3: send event2 thread1: AND recv event 0x28 thread1: delay 1s to prepare second event thread3: send event2 thread3 leave. thread1: OR recv event 0x20 thread1 leave.