当前位置:Gxlcms > mysql > ORACLE分组统计

ORACLE分组统计

时间:2021-07-01 10:21:17 帮助过:23人阅读

欢迎进入Oracle社区论坛,与200万技术人员互动交流 >>进入 ROLLUP和CUBE语句。 Oracle的GROUP BY语句除了最基本的语法外,还支持ROLLUP和CUBE语句。如果是ROLLUP(A, B, C)的话,首先会对(A、B、C)进行GROUP BY,然后对(A、B)进行GROUP BY,然后是(A)

欢迎进入Oracle社区论坛,与200万技术人员互动交流 >>进入

ROLLUP和CUBE语句。

Oracle的GROUP

BY语句除了最基本的语法外,还支持ROLLUP和CUBE语句。如果是ROLLUP(A, B, C)的话,首先会对(A、B、C)进行GROUP

BY,然后对(A、B)进行GROUP BY,然后是(A)进行GROUP BY,最后对全表进行GROUP BY操作。如果是GROUP BY

CUBE(A, B, C),则首先会对(A、B、C)进行GROUP

BY,然后依次是(A、B),(A、C),(A),(B、C),(B),(C),最后对全表进行GROUP BY操作。

grouping_id()可以美化效果:

Oracle的GROUP BY语句除了最基本的语法外,还支持ROLLUP和CUBE语句。

除本文内容外,你还可参考:

分析函数参考手册:

http://xsb.itpub.net/post/419/33028

分析函数使用例子介绍:

http://xsb.itpub.net/post/419/44634

SQL> create table t as select * from dba_indexes;

表已创建。

SQL> select index_type, status, count(*) from t group by index_type, status;

INDEX_TYPE STATUS COUNT(*)

--------------------------- -------- ----------

LOB VALID 51

NORMAL N/A 25

NORMAL VALID 479

CLUSTER VALID 11

下面来看看ROLLUP和CUBE语句的执行结果。

SQL> select index_type, status, count(*) from t group by rollup(index_type, status);

INDEX_TYPE STATUS COUNT(*)

--------------------------- -------- ----------

LOB VALID 51

LOB 51

NORMAL N/A 25

NORMAL VALID 479

NORMAL 504

CLUSTER VALID 11

CLUSTER 11

566

已选择8行。

SQL> select index_type, status, count(*) from t group by cube(index_type, status);

INDEX_TYPE STATUS COUNT(*)

--------------------------- -------- ----------

566

N/A 25

VALID 541

LOB 51

LOB VALID 51

NORMAL 504

NORMAL N/A 25

NORMAL VALID 479

CLUSTER 11

CLUSTER VALID 11

已选择10行。

查询结果不是很一目了然,下面通过Oracle提供的函数GROUPING来整理一下查询结果。

SQL> select grouping(index_type) g_ind, grouping(status) g_st, index_type, status, count(*)

2 from t group by rollup(index_type, status) order by 1, 2;

G_IND G_ST INDEX_TYPE STATUS COUNT(*)

---------- ---------- --------------------------- -------- ----------

0 0 LOB VALID 51

0 0 NORMAL N/A 25

0 0 NORMAL VALID 479

0 0 CLUSTER VALID 11

0 1 LOB 51

0 1 NORMAL 504

0 1 CLUSTER 11

1 1 566

已选择8行。

这个查询结果就直观多了,和不带ROLLUP语句的GROUP BY相比,ROLLUP增加了对INDEX_TYPE的GROUP BY统计和对所有记录的GROUP BY统计。

也就是说,如果是ROLLUP(A, B, C)的话,首先会对(A、B、C)进行GROUP BY,然后对(A、B)进行GROUP BY,然后是(A)进行GROUP BY,最后对全表进行GROUP BY操作。

下面看看CUBE语句。

SQL> select grouping(index_type) g_ind, grouping(status) g_st, index_type, status, count(*)

2 from t group by cube(index_type, status) order by 1, 2;

G_IND G_ST INDEX_TYPE STATUS COUNT(*)

---------- ---------- --------------------------- -------- ----------

0 0 LOB VALID 51

0 0 NORMAL N/A 25

0 0 NORMAL VALID 479

0 0 CLUSTER VALID 11

0 1 LOB 51

0 1 NORMAL 504

0 1 CLUSTER 11

1 0 N/A 25

1 0 VALID 541

1 1 566

已选择10行。

和ROLLUP相比,CUBE又增加了对STATUS列的GROUP BY统计。

如果是GROUP BY CUBE(A, B, C),则首先会对(A、B、C)进行GROUP BY,然后依次是(A、B),(A、C),(A),(B、C),(B),(C),最后对全表进行GROUP BY操作。

除了使用GROUPING函数,还可以使用GROUPING_ID来标识GROUP BY结果。

SQL> select grouping_id(index_type, status) g_ind, index_type, status, count(*)

2 from t group by rollup(index_type, status) order by 1;

G_IND INDEX_TYPE STATUS COUNT(*)

---------- --------------------------- -------- ----------

0 LOB VALID 51

0 NORMAL N/A 25

0 NORMAL VALID 479

0 CLUSTER VALID 11

1 LOB 51

1 NORMAL 504

1 CLUSTER 11

3 566

已选择8行。

SQL> select grouping_id(index_type, status) g_ind, index_type, status, count(*)

2 from t group by cube(index_type, status) order by 1;

G_IND INDEX_TYPE STATUS COUNT(*)

---------- --------------------------- -------- ----------

0 LOB VALID 51

0 NORMAL N/A 25

0 NORMAL VALID 479

0 CLUSTER VALID 11

1 LOB 51

1 NORMAL 504

1 CLUSTER 11

2 N/A 25

2 VALID 541

3 566

已选择10行。

grouping_id()可以美化效果:

select DECODE(GROUPING_ID(C1), 1, '合计', C1) D1,

DECODE(GROUPING_ID(C1, C2), 1, '小计', C2) D2,

DECODE(GROUPING_ID(C1, C2, C1 + C2), 1, '小计', C1 + C2) D3,

count(*),

GROUPING_ID(C1, C2, C1 + C2, C1 + 1, C2 + 1),

GROUPING_ID(C1)

from T2

group by rollup(C1, C2, C1 + C2, C1 + 1, C2 + 1);

===========================================================

1.

报表合计专用的

Rollup

函数

销售报表

以往的查询

SQL:

Select

area,month,sum(money) from SaleOrder group by area,month

[1] [2] [3]

人气教程排行