时间:2021-07-01 10:21:17 帮助过:24人阅读
前几天我写了点btree的东西(http://thuhak.blog.51cto.com/2891595/1261783),今天继续这个思路,继续写b+tree。而且b+tree才是我的目的,更加深入理解文件和数
前几天我写了点btree的东西(),今天继续这个思路,继续写b+tree。
而且b+tree才是我的目的,更加深入理解文件和数据库索引的基本原理。
在之前,我一直只把b+tree当成是btree的一种变形,或者说是在某种情况下的一种优化,另外一些情况可能还是btree好些。但是做完之后才发现,b+tree在各种情况都可以完全取代btree,香港虚拟主机,并能够让索引性能得到比btree更好的优化。因为b+tree设计的核心要点,是为了弥补btree最大的缺陷。
btree最大的缺陷是什么?
首先,我们知道对于btree和b+tree这种多路搜索树来说,一个很重要的特点就是树的度数非常大。因为只有这样才能够降低树的深度,减少磁盘读取的次数。而树的度数越大,叶子节点在树中的比例就越大。假设度数为1000,那么叶子节点比他上一层内部节点的数量至少要多1000倍,在上一层就更加可以忽略不计了。可以说树种99.9%的节点都是叶子节点。 但是对于btree来说,所有节点都是一样的结构,都含有一定数量的数据和指向节点的指针。这两项数据占据btree节点的几乎全部的空间。一个节点内的数据的数量比硬盘指针的数量少一,可以说和指针的数量几乎相等。对于python这种动态类型语言感觉不出来,但是对于C这种固定类型语言来说,即使这个children list数组为空,这个数组的空间也都是预留出去的。导致的结果就是占绝大多数的叶子节点的children list指针数组所占的磁盘空间完全浪费。
一个数据的大小和硬盘指针的大小取决于key-value中key和value大小的比值。假如说这个比值是2:1。那么btree浪费了几乎1/3的空间。
b+tree针对这个问题的,把叶子节点和内节点的数据结构分开设计,让叶子节点不存放指针。因此同样大小的叶子节点,b+tree所能包含数据数量要比btree大。按照上面的假设就是大1/2。数的深度很可能比btree矮,大范围搜索或遍历所需要的载入磁盘的次数也少。
另外,b+tree还有一个特点是所有数据都存放在叶子节点,这些叶子节点也可以组成一个链表,并把这个链表的表头拿出来,方便直访问数据。有些文章认为这对于范围搜索来说是个巨大的优化。但是就我的看法,这个特性最大的作用仅仅是让代码更容易一些,性能上,只会比树的遍历差,而不会比树的遍历好。因为不管是用指向叶子节点的指针搜,还是用树的遍历搜,所搜索的节点的数量都是几乎相同的。在相同大小的范围搜索的性能,只取决于访问顺序的连续性。从树根向下遍历,那么一次可以取得大量的子节点的范围,并针对这些节点做访问排序,得到更好的访问连续性。如果是沿着指向兄弟节点的指针搜索,一是兄弟节点也许是后插入的,存放并不一定和自己是连续的,二是只有每次从硬盘中将改节点载入到内存,才知道兄弟节点放在硬盘哪个位置,这又变成了对硬盘的一个随机的同步操作,性能的下降可想而知。
说b+tree因为有指向兄弟节点的指针方便数据库扫库这种结论,是不正确的。
还是上代码吧,依旧只是在内存对数据结构插入删除查找的模拟
#!/usr/bin/env python from random import randint,choice from bisect import bisect_right,bisect_left from collections import deque class InitError(Exception): pass class ParaError(Exception): pass class KeyValue(object): __slots__=('key','value') def __init__(self,key,value): self.key=key self.value=value def __str__(self): return str((self.key,self.value)) def __cmp__(self,key): if self.key>key: return 1 elif self.key==key: return 0 else: return -1 class Bptree_InterNode(object): def __init__(self,M): if not isinstance(M,int): raise InitError,'M must be int' if M<=3: raise InitError,'M must greater then 3' else: self.__M=M self.clist=[] self.ilist=[] self.par=None def isleaf(self): return False def isfull(self): return len(self.ilist)>=self.M-1 def isempty(self): return len(self.ilist)<=(self.M+1)/2-1 @property def M(self): return self.__M class Bptree_Leaf(object): def __init__(self,L): if not isinstance(L,int): raise InitError,'L must be int' else: self.__L=L self.vlist=[] self.bro=None self.par=None def isleaf(self): return True def isfull(self): return len(self.vlist)>self.L def isempty(self): return len(self.vlist)<=(self.L+1)/2 @property def L(self): return self.__L class Bptree(object): def __init__(self,M,L): if L>M: raise InitError,'L must be less or equal then M' else: self.__M=M self.__L=L self.__root=Bptree_Leaf(L) self.__leaf=self.__root @property def M(self): return self.__M @property def L(self): return self.__L def insert(self,key_value): node=self.__root def split_node(n1): mid=self.M/2 newnode=Bptree_InterNode(self.M) newnode.ilist=n1.ilist[mid:] newnode.clist=n1.clist[mid:] newnode.par=n1.par for c in newnode.clist: c.par=newnode if n1.par is None: newroot=Bptree_InterNode(self.M) newroot.ilist=[n1.ilist[mid-1]] newroot.clist=[n1,newnode] n1.par=newnode.par=newroot self.__root=newroot else: i=n1.par.clist.index(n1) n1.par.ilist.insert(i,n1.ilist[mid-1]) n1.par.clist.insert(i+1,newnode) n1.ilist=n1.ilist[:mid-1] n1.clist=n1.clist[:mid] return n1.par def split_leaf(n2): mid=(self.L+1)/2 newleaf=Bptree_Leaf(self.L) newleaf.vlist=n2.vlist[mid:] if n2.par==None: newroot=Bptree_InterNode(self.M) newroot.ilist=[n2.vlist[mid].key] newroot.clist=[n2,newleaf] n2.par=newleaf.par=newroot self.__root=newroot else: i=n2.par.clist.index(n2) n2.par.ilist.insert(i,n2.vlist[mid].key) n2.par.clist.insert(i+1,newleaf) newleaf.par=n2.par n2.vlist=n2.vlist[:mid] n2.bro=newleaf def insert_node(n): if not n.isleaf(): if n.isfull(): insert_node(split_node(n)) else: p=bisect_right(n.ilist,key_value) insert_node(n.clist[p]) else: p=bisect_right(n.vlist,key_value) n.vlist.insert(p,key_value) if n.isfull(): split_leaf(n) else: return insert_node(node) def search(self,mi=None,ma=None): result=[] node=self.__root leaf=self.__leaf if mi is None and ma is None: raise ParaError,'you need setup searching range' elif mi is not None and ma is not None and mi>ma: raise ParaError,'upper bound must be greater or equal than lower bound' def search_key(n,k): if n.isleaf(): p=bisect_left(n.vlist,k) return (p,n) else: p=bisect_right(n.ilist,k) return search_key(n.clist[p],k) if mi is None: while True: for kv in leaf.vlist: if kv<=ma: result.append(kv) else: return result if leaf.bro==None: return result else: leaf=leaf.bro elif ma is None: index,leaf=search_key(node,mi) result.extend(leaf.vlist[index:]) while True: if leaf.bro==None: return result else: leaf=leaf.bro result.extend(leaf.vlist) else: if mi==ma: i,l=search_key(node,mi) try: if l.vlist[i]==mi: result.append(l.vlist[i]) return result else: return result except IndexError: return result else: i1,l1=search_key(node,mi) i2,l2=search_key(node,ma) if l1 is l2: if i1==i2: return result else: result.extend(l.vlist[i1:i2]) return result else: result.extend(l1.vlist[i1:]) l=l1 while True: if l.bro==l2: result.extend(l2.vlist[:i2+1]) return result else: result.extend(l.bro.vlist) l=l.bro def traversal(self): result=[] l=self.__leaf while True: result.extend(l.vlist) if l.bro==None: return result else: l=l.bro def show(self): print 'this b+tree is:\n' q=deque() h=0 q.append([self.__root,h]) while True: try: w,hei=q.popleft() except IndexError: return else: if not w.isleaf(): print w.ilist,'the height is',hei if hei==h: h+=1 q.extend([[i,h] for i in w.clist]) else: print [v.key for v in w.vlist],'the leaf is,',hei def delete(self,key_value): def merge(n,i): if n.clist[i].isleaf(): n.clist[i].vlist=n.clist[i].vlist+n.clist[i+1].vlist n.clist[i].bro=n.clist[i+1].bro else: n.clist[i].ilist=n.clist[i].ilist+[n.ilist[i]]+n.clist[i+1].ilist n.clist[i].clist=n.clist[i].clist+n.clist[i+1].clist n.clist.remove(n.clist[i+1]) n.ilist.remove(n.ilist[i]) if n.ilist==[]: n.clist[0].par=None self.__root=n.clist[0] del n return self.__root else: return n def tran_l2r(n,i): if not n.clist[i].isleaf(): n.clist[i+1].clist.insert(0,n.clist[i].clist[-1]) n.clist[i].clist[-1].par=n.clist[i+1] n.clist[i+1].ilist.insert(0,n.ilist[i]) n.ilist[i]=n.clist[i].ilist[-1] n.clist[i].clist.pop() n.clist[i].ilist.pop() else: n.clist[i+1].vlist.insert(0,n.clist[i].vlist[-1]) n.clist[i].vlist.pop() n.ilist[i]=n.clist[i+1].vlist[0].key def tran_r2l(n,i): if not n.clist[i].isleaf(): n.clist[i].clist.append(n.clist[i+1].clist[0]) n.clist[i+1].clist[0].par=n.clist[i] n.clist[i].ilist.append(n.ilist[i]) n.ilist[i]=n.clist[i+1].ilist[0] n.clist[i+1].clist.remove(n.clist[i+1].clist[0]) n.clist[i+1].ilist.remove(n.clist[i+1].ilist[0]) else: n.clist[i].vlist.append(n.clist[i+1].vlist[0]) n.clist[i+1].vlist.remove(n.clist[i+1].vlist[0]) n.ilist[i]=n.clist[i+1].vlist[0].key def del_node(n,kv): if not n.isleaf(): p=bisect_right(n.ilist,kv) if p==len(n.ilist): if not n.clist[p].isempty(): return del_node(n.clist[p],kv) elif not n.clist[p-1].isempty(): tran_l2r(n,p-1) return del_node(n.clist[p],kv) else: return del_node(merge(n,p),kv) else: if not n.clist[p].isempty(): return del_node(n.clist[p],kv) elif not n.clist[p+1].isempty(): tran_r2l(n,p) return del_node(n.clist[p],kv) else: return del_node(merge(n,p),kv) else: p=bisect_left(n.vlist,kv) try: pp=n.vlist[p] except IndexError: return -1 else: if pp!=kv: return -1 else: n.vlist.remove(kv) return 0 del_node(self.__root,key_value) def test(): mini=2 maxi=60 testlist=[] for i in range(1,10): key=i value=i testlist.append(KeyValue(key,value)) mybptree=Bptree(4,4) for kv in testlist: mybptree.insert(kv) mybptree.delete(testlist[0]) mybptree.show() print '\nkey of this b+tree is \n' print [kv.key for kv in mybptree.traversal()] #print [kv.key for kv in mybptree.search(mini,maxi)] if __name__=='__main__': test()实现过程和btree很像,不过有几点显著不同。
1.内节点不存储key-value,只存放key
2.沿着内节点搜索的时候,香港服务器租用,查到索引相等的数要向树的右边走。所以二分查找要选择bisect_right