时间:2021-07-01 10:21:17 帮助过:6人阅读
SQL索引学习-索引结构 前一阵无意中和同事讨论过一个SQL相关的题(通过一个小问题来学习SQL关联查询),很惭愧一个非常简单的问题由于种种原因居然没有回答正确,数据库知识方面我算不上技术好,谈起SQL知识的学习我得益于2008年进的一家公司,有几个DBA技术相
SQL索引学习-索引结构
前一阵无意中和同事讨论过一个SQL相关的题(通过一个小问题来学习SQL关联查询),很惭愧一个非常简单的问题由于种种原因居然没有回答正确,数据库知识方面我算不上技术好,谈起SQL知识的学习我得益于2008年进的一家公司,有几个DBA技术相当专业,正好手上有一个项目遇到了一些数据库查询性能问题,就试着想办法优化,于是自己将相法和DBA沟通后,居然得到了他们的赞同,让我信心大增,后来一段时间我又主动找他们聊了一些其它的知识,所以在数据库索引这块我算是相对一般的.net程序员要更加有见解一些。当时我们部门由于分工的不同,部门20多人基本上工作中从来不和SQL打交道,后台的接口都由其它部门来完成了,我们注意的 业务逻辑,所以有一些完全不懂SQL的程序员。之后的四年我大部分都是做一些通用平台架构方面的工作,也比较少直接接触SQL,直到后来换了公司,特别是去年开始由于项目性质的变化,我开始慢慢又开始接触SQL。
工作时间的长短在某种程度上能决定一个人的技术水平,但往往技术水平和实际工作的产出不一定成正比。比如我上面提到那个SQL问题,很多有经验的程序员在第一个答案中往往回答错误,但他确实能将项目做好,因为大家平时观注的还是结果,只要结果出来了比什么都强,至于为什么出这样的结果一般也就不会多做分析研究。这种形式呢,对那些对技术提升没有强烈要求的人来讲,已经够用了,多试几次,只要最终能出结果也就万事大吉了,做的多了,后续遇到类似的问题也就轻车熟路了,这就是所谓的经验,只知道这样做就能出结果。
其实这种工作学习方式呢,有一个比较显著的问题,就是对自己写出来的东西没有足够的信心,因为靠的是以往的经验。是出现错误之后通过不断的尝试来取得的经验,有一种探索的味道,在工作效率上会存在问题,因为总有你以前没有遇到过的场景,这样你可能对第一方案做多次尝试才找到正解,反之的话,第一个方案可能花的时间稍长一些,但后续反复修改的次数会相当较少。
SQL索引目录
借这次机会呢,将SQL索引的理解整理出来,供大家一起学习提高,这是我的学习笔记,有错误的地方,欢迎大家批评指正。下面是预计的目录:
页和区要想做好索引优化,知道索引的存储结构是至关重要的。谈到存储就需要了解SQL中的页和区的概念:
知识了区以及页的概念,再看下数据表和这两者之间的联系, 表包含一个或多个分区,每个分区在一个堆或一个聚集索引结构中包含数据行。从下图的结构中,我们就看到了索引的重要结构B-树了。
聚集索引结构
索引中的底层节点称为叶节点。根节点与叶节点之间的任何索引级别统称为中间级。在聚集索引中,叶节点包含基础表的数据页。根节点和中间级节点包含存有索引行的索引页。每个索引行包含一个键值和一个指针,该指针指向 B -树上的某一中间级页或叶级索引中的某个数据行。每级索引中的页均被链接在双向链接列表中。
非聚集索引结构
非聚集索引与聚集索引之间的显著差别在于以下两点:
我们先看下B-树,这种索引结构有一个重要的参数n,它决定了索引存储页的布局,每个存储页需要存放n个节点,以及n+1个指针。 这里我们来做个计算:比如我们的索引是一个整形数字,4个字节,指针需要8个字节,这里不考虑索引页标头信息的占用,算下最大的n,公式: 4n+8(n+1)<=8*1024 ,这个值是680,即最大可存放680个键,再按B-树充满度来取75%等于510,根结点有510个,那么它会有510*510个叶结点,这些叶结点会有510*510*510个指向最终记录的指针。这个数据足以说明绝多数情况下,只要三层就能够用。
索引中的键顺序与数据文件中的排序顺序相同,所以我们的索引结构中,叶级均采用稿密索引。
它只为每个存储块设计键-指针对,比稿密索引节约空间,出现在叶级之上的结构中。