当前位置:Gxlcms > mysql > MySQLCluster写入效率测试

MySQLCluster写入效率测试

时间:2021-07-01 10:21:17 帮助过:40人阅读

MySQL Cluster使用到目前为止遇到渴望得到答案的问题,也是直接影响使用的问题就是MySQL Cluster的写入效率问题和Cluster是否适合大数据存储、如何配置存储的问题。 在之前的测试中MySQL Cluster的写入效率一直不佳,这也是直接影响能否使用MySQL Cluster的

MySQL Cluster使用到目前为止遇到渴望得到答案的问题,也是直接影响使用的问题就是MySQL Cluster的写入效率问题和Cluster是否适合大数据存储、如何配置存储的问题。

在之前的测试中MySQL Cluster的写入效率一直不佳,这也是直接影响能否使用MySQL Cluster的关键。现在我们来仔细测试一下。使用的环境略有变化。

Data节点的内存扩展为4G。

集群配置如下:

[ndbd default]
# Options affecting ndbd processes on all data nodes:
NoOfReplicas=2    # Number of replicas
DataMemory=2000M    # How much memory to allocate for data storage
IndexMemory=300M   # How much memory to allocate for index storage
                  # For DataMemory and IndexMemory, we have used the
                  # default values. Since the "world" database takes up
                  # only about 500KB, this should be more than enough for
                  # this example Cluster setup.
MaxNoOfConcurrentOperations=1200000
MaxNoOfLocalOperations=1320000

测试代码如下:

/**
      * 向数据库中插入数据
      *
      * @param conn
      * @param totalRowCount
      * @param perRowCount
      * @param tableName
      * @author lihzh(OneCoder)
      * @throws SQLException
      * @date 2013 -1 -17 下午1:57:10
      */
     private void insertDataToTable(Connection conn, String tableName,
                 long totalRowCount, long perRowCount, long startIndex)
                 throws SQLException {
           conn.setAutoCommit( false);
           String sql = "insert into " + tableName + " VALUES(?,?,?)";
           System. out.println( "Begin to prepare statement.");
           PreparedStatement statement = conn.prepareStatement(sql);
            long sum = 0L;
            for ( int j = 0; j < TOTAL_ROW_COUNT / BATCH_ROW_COUNT; j++) {
                 long batchStart = System. currentTimeMillis();
                 for ( int i = 0; i < BATCH_ROW_COUNT; i++) {
                      long id = j * BATCH_ROW_COUNT + i + startIndex;
                     String name_pre = String. valueOf(id);
                     statement.setLong(1, id);
                     statement.setString(2, name_pre);
                     statement.setString(3, name_pre);
                     statement.addBatch();
                }
                System. out.println( "It's up to batch count: " + BATCH_ROW_COUNT);
                statement.executeBatch();
                conn.commit();
                 long batchEnd = System. currentTimeMillis();
                 long cost = batchEnd - batchStart;
                System. out.println( "Batch data commit finished. Time cost: "
                           + cost);
                sum += cost;
           }
           System. out.println( "All data insert finished. Total time cost: "
                     + sum);
           System. out.println( "Avg cost: "
                     + sum/5);
     }

分下列情景进行写入测试。

数据加载、写入在内存中时,在独立的新库、新表中一次写入100,1000,10000,50000条记录,分别记录其耗时情况。(5次平均)

		100:260ms
		1000:1940ms
		10000:17683ms(12000-17000)
		50000: 93308、94730、90162、94849、162848

与普通单点MySQL写入效率进行对比(2G内存)

		100:182ms
		1000:1624ms
		10000:14946ms
		50000:84438ms

    双线程并发写入测试

由于只有两个SQL节点,所以这里只采用双线程写入的方法进行测试。代码上采用了简单的硬编码

/**
      * 多线程并行写入测试
      *
      * @author lihzh(OneCoder)
      * @blog http://www.coderli.com
      * @date 2013 -2 -27 下午3:39:56
      */
     private void parallelInsert() {
            final long start = System. currentTimeMillis();
           Thread t1 = new Thread( new Runnable() {
                 @Override
                 public void run() {
                      try {
                           Connection conn = getConnection(DB_IPADDRESS, DB_PORT,
                                      DB_NAME, DB_USER, DB_PASSOWRD);
                           MySQLClusterDataMachine dataMachine = new MySQLClusterDataMachine();
                           dataMachine.insertDataToTable(conn, TABLE_NAME_DATAHOUSE,
                                     500, 100, 0);
                            long end1 = System.currentTimeMillis();
                           System. out.println( "Thread 1 cost: " + (end1 - start));
                     } catch (SQLException e) {
                           e.printStackTrace();
                     }
                }
           });
           Thread t2 = new Thread( new Runnable() {
                 @Override
                 public void run() {
                      try {
                           Connection conn = getConnection(DB_IPADDRESS_TWO, DB_PORT,
                                      DB_NAME, DB_USER, DB_PASSOWRD);
                           MySQLClusterDataMachine dataMachine = new MySQLClusterDataMachine();
                           dataMachine.insertDataToTable(conn, TABLE_NAME_DATAHOUSE,
                                     500, 100, 500);
                            long end2 = System.currentTimeMillis();
                           System. out.println( "Thread 2 cost: " + (end2 - start));
                     } catch (SQLException e) {
                           e.printStackTrace();
                     }
                }
           });
           t1.start();
           t2.start();
     }

测试结果:

(总条数/每次) 线程1(总/平均- 各写一半数据) 线程2 并行总耗时 单线程单点
1000/100 985/197 1005/201 1005/201 2264/226
10000/1000 9223/1836 9297/1850 9297/1850 19405/1940
100000/10000 121425/12136 122081/12201 121425/12136 148518/14851
 

从结果可以看出,在10000条以下批量写入的情况下,SQL节点的处理能力是集群的瓶颈,双线程双SQL写入相较单线程单节点效率可提升一倍。但是当批量写入数据达到一定数量级,这种效率的提升就不那么明显了,应该是集群中的其他位置也产生了瓶颈。

注:由于各自测试环境的差异,测试数据仅可做内部比较,不可外部横向对比。仅供参考。

写入测试,要做的还很多,不过暂时告一段落。大数据存储和查询测试,随后进行。

人气教程排行