当前位置:Gxlcms > mysql > 解决HDFS磁盘扫描导致死亡结点的问题

解决HDFS磁盘扫描导致死亡结点的问题

时间:2021-07-01 10:21:17 帮助过:109人阅读

在Hadoop集群从1.0升级到2.0之后,我们一直在解决很多很多的问题。在今年8月初,我们检测到线上频繁有机器变成死亡结点,一段时间后自动恢复。进入死亡结点状态的DataNode将不能读写数据块。我们观察了一下日志,看到DataNode中打印出很多接受数据快传输的线

在Hadoop集群从1.0升级到2.0之后,我们一直在解决很多很多的问题。在今年8月初,我们检测到线上频繁有机器变成死亡结点,一段时间后自动恢复。进入死亡结点状态的DataNode将不能读写数据块。我们观察了一下日志,看到DataNode中打印出很多接受数据快传输的线程(DataXceiver),线程都是在Receiving的状态,而没有结束。估摸了一下在死亡结点发生的阶段大约有300个左右的线程积累下来。但是,没找到其它突破口。

由于,HDFS的Client会自动重试。如果一个结点进入死亡结点,只要另外的数据块的结点依然可读,Client还是可以读取到数据块的。所以,死亡结点的问题对线上业务没有造成影响。当时,还有其它优先级更高的事情,所以,问题转为观察状态。

然后终于在一次机房意外断电,集群重启之后,一个线上的作业报找不到数据块。经日志确认,产生的原因是拥有这个数据块副本的两个机器同时进入死亡结点! 于是,问题转入高优先级,优先解决。

现象总结

  • 出现死亡结点的机器集中在磁盘数量较多的机器。
  • 死亡结点跟机器的CPU,内存或者网络关系不大。
  • 出现死亡结点的时候,DataNode有大量DataXceiver的线程积压。
  • 虽然,总体上机器出现死亡结点的时间比较分散。但是,单一的DataNode上出现死亡结点的间隔必然是6小时或者6小时的整数倍。

攻坚

首先知道,DataNode进入死亡结点状态是因为NameNode长期接收不到DataNode的心跳包,就会把DataNode归入死亡结点。而DataNode的心跳线程是单独一个线程。

现象的最后一点,6小时的间隔,可谓是这个问题的突破点。在配置文件中找到6小时的间隔的工作有两种:

  1. DataNode和NameNode的6小时一次的心跳报告。用于更新NameNode上的Block信息。
  2. DataNode每6小时一次的磁盘扫描。用于更新内存中的信息和磁盘中信息的不一致。

根据两者打印的日志和死亡结点发生的时间进行精确对比,发现后者的时间基本吻合。 然后,我们在集中查看磁盘扫描(DirectoryScanner)的代码。

描述一下磁盘扫描的工作流程:

  1. 启动一个主线程和一个线程池。
  2. 主线程往线程池提交多个磁盘扫描的任务。任务是遍历整个数据目录记录所有的数据块的信息和对应的Meta信息
  3. 主线程等待线程池的任务返回,收集扫描结果。
  4. 将扫描结果和内存中的数据块进行对比,得到DiffRecord,算法复杂度O(n),数据块越多速度越慢。
  5. 根据DiffRecord修改对应的内存数据。

第一步,主线程和线程池的线程都是Daemon线程。Daemon线程的默认优先级比较低。

第二步,由于涉及到磁盘读写。如果,外部磁盘压力大的时候,会拖慢整个进度。但是,整个过程没有加锁。不可能对其它线程产生影响。

第四步,数据块对比过程,为了阻止对blockMap的修改,整个过程针对DataSet对象加锁(DataSet对象是DataNode中保存所有数据块信息的内存对象)。

那心跳进程为什么会使用DataSet的对象锁? 我们写了个小程序测试,在对DataSet加锁的情况下,启动心跳线程。发现心跳线程在获取磁盘的可用空间的时候,需要获得DataSet的锁。

于是,问题变得清晰了:在6小时一次的磁盘扫描中,由于DirectoryScanner长久占用了DataSet的锁,导致心跳线程不能发出心跳包。DataNode进入死亡结点状态。而问题频发在磁盘较多的机器是因为,数据块数量和对比的过程的耗时相关。那是什么原因导致DirectoryScanner长久占用了DataSet的锁呢?

我们观察了加锁部分的代码,没有找到磁盘操作。我们估摸了下,最多数据块的机器也才80W左右各数据块。如果是纯内存操作,不可能占用锁长达10分钟甚至30分钟之久。

然后我们将怀疑的地方锁定在主线程的Daemon属性。因为,Daemon属性的线程优先级较低,怀疑是主线程在多线程的情况下,分配不到CPU时间片。

于是,我们作出第一个修改:将主线程改为普通线程的优先级

上线第二天,死亡结点现象还是出现,现象出现的时间相对来说是短了点,但还是不能解决问题。

于是,我们开了个大招:针对死亡结点频发的结点,加上一个每分钟打印一次DataNode的jstack的脚本。

终于我们捕获了在死亡结点发生时候的几个堆栈。经过对比分析,得出的结论是:

(呵呵)数据块对比过程中,有一个使用Java的File对象的获取文件长度的getlength方法。而这个方法是直接调用一个native方法,获取磁盘上文件的长度。

当初我们就猜想,加锁部分是否有磁盘的IO操作。因为IO操作的快慢,会受到当时的机器状态影响很大。不得不说,这个位置太隐蔽了。看了很久都没发现,还好有jstack截获出来。

总结

6小时一次的DirectoryScanner在数据块对比过程中,会对DataSet加锁。如果,机器的磁盘压力很高的情况下,对比过程中的磁盘操作十分耗时。导致DirectoryScanner长期持有DataSet的锁,阻塞心跳线程和所有的DataXceiver的线程。DataNode变成死亡结点。一段时间后,对比过程结束。DataSet锁释放,DataNode回归正常工作。

解决

知道问题了就好解决了。我们采取的方式是把getlength操作提取到第二步的线程池的异步磁盘扫描中进行

部署到线上后,数据对比时间降低到2秒左右。至此,死亡结点问题解决!

后续我们把Patch提交到Hadoop社区HDFS-5341,其中蹩脚的英语语法请大家无视。

人气教程排行