当前位置:Gxlcms > mysql > 深入解析NoSQL数据库的分布式算法

深入解析NoSQL数据库的分布式算法

时间:2021-07-01 10:21:17 帮助过:50人阅读

系统的可扩展性是推动NoSQL运动发展的的主要理由,包含了分布式系统协调,故障转移,资源管理和许多其他特性。这么讲使得NoSQL听

深入解析NoSQL数据库的分布式算法

系统的可扩展性是推动NoSQL运动发展的的主要理由,包含了分布式系统协调,故障转移,资源管理和许多其他特性。这么讲使得NoSQL听起来像是一个大筐,什么都能塞进去。尽管NoSQL运动并没有给分布式数据处理带来根本性的技术变革,但是依然引发了铺天盖地的关于各种协议和算法的研究以及实践。正是通过这些尝试逐渐总结出了一些行之有效的数据库构建方法。在这篇文章里,我将针对NoSQL数据库的分布式特点进行一些系统化的描述。

接下来我们将研究一些分布式策略,比如故障检测中的复制,这些策略用黑体字标出,被分为三段:

数据一致性

众所周知,分布式系统经常会遇到网络隔离或是延迟的情况,在这种情况下隔离的部分是不可用的,因此要保持高可用性而不牺牲一致性是不可能的。这一事实通常被称作“CAP理论”。然而,一致性在分布式系统中是一个非常昂贵的东西,所以经常需要在这上面做一些让步,不只是针对可用性,还有多种权衡。为了研究这些权衡,我们注意到分布式系统的一致性问题是由数据隔离和复制引起的,所以我们将从研究复制的特点开始:

  • 读写一致性。从读写的观点来看,数据库的基本目标是使副本趋同的时间尽可能短(即更新传递到所有副本的时间),保证最终一致性。除了这个较弱的保证,还有一些更强的一致性特点:
  • 写后读一致性。在数据项X上写操作的效果总是能够被后续的X上的读操作看见。
  • 读后读一致性。在一次对数据项X的读操作之后,后续对X的读操作应该返回与第一次的返回值相同或是更加新的值。
  • 写一致性。分区的数据库经常会发生写冲突。数据库应当能处理这种冲突并保证多个写请求不会被不同的分区所处理。这方面数据库提供了几种不同的一致性模型:
  • 原子写。假如数据库提供了API,一次写操作只能是一个单独的原子性的赋值,避免写冲突的办法是找出每个数据的“最新版本”。这使得所有的节点都能够在更新结束时获得同一版本,而与更新的顺序无关,网络故障和延迟经常造成各节点更新顺序不一致。 数据版本可以用时间戳或是用户指定的值来表示。Cassandra用的就是这种方法。
  • 原子化的读-改-写。应用有时候需要进行 读-改-写 序列操作而非单独的原子写操作。假如有两个客户端读取了同一版本的数据,修改并且把修改后的数据写回,按照原子写模型,时间上比较靠后的那一次更新将会覆盖前一次。这种行为在某些情况下是不正确的(例如,两个客户端往同一个列表值中添加新值)。数据库提供了至少两种解决方法:
  • 冲突预防。 读-改-写 可以被认为是一种特殊情况下的事务,所以分布式锁或是 PAXOS这样的一致协议都可以解决这种问题。这种技术支持原子读改写语义和任意隔离级别的事务。另一种方法是避免分布式的并发写操作,将对特定数据项的所有写操作路由到单个节点上(可以是全局主节点或者分区主节点)。为了避免冲突,数据库必须牺牲网络隔离情况下的可用性。这种方法常用于许多提供强一致性保证的系统(例如大多数关系数据库,HBase,MongoDB)。
  • 冲突检测。数据库跟踪并发更新的冲突,并选择回滚其中之一或是维持两个版本交由客户端解决。并发更新通常用向量时钟 (这是一种乐观锁)来跟踪,或者维护一个完整的版本历史。这个方法用于 Riak, Voldemort, CouchDB.
  • 现在让我们仔细看看常用的复制技术,并按照描述的特点给他们分一下类。第一幅图描绘了不同技术之间的逻辑关系和不同技术在系统的一致性、扩展性、可用性、延迟性之间的权衡坐标。 第二张图详细描绘了每个技术。

    深入解析NoSQL数据库的分布式算法

    深入解析NoSQL数据库的分布式算法

    复本因子是4。读写协调者可以是一个外部客户端或是一个内部代理节点。

    《NoSQL数据库入门》,高清PDF 版下载见

    NoSQL数据库的基础知识

    企业应用NoSQL的关键

    我们会依据一致性从弱到强把所有的技术过一遍:

    (A, 反熵) 一致性最弱,基于策略如下。写操作的时候选择任意一个节点更新,在读的时候如果新数据还没有通过后台的反熵协议传递到读的那个节点,那么读到的仍然是旧数据。(下一节会详细介绍反熵协议)。这种方法的主要特点是:

  • 过高的传播延迟使它在数据同步方面不太好用,所以比较典型的用法是只作为辅助性的功能来检测和修复计划外的不一致。Cassandra就使用了反熵算法来在各节点之间传递数据库拓扑和其他一些元数据信息。
  • 一致性保证较弱:即使在没有发生故障的情况下,也会出现写冲突与读写不一致。
  • 在网络隔离下的高可用和健壮性。用异步的批处理替代了逐个更新,这使得性能表现优异。
  • 持久性保障较弱因为新的数据最初只有单个副本。
  • (B) 对上面模式的一个改进是在任意一个节点收到更新数据请求的同时异步的发送更新给所有可用节点。这也被认为是定向的反熵。

  • 与纯粹的反熵相比,这种做法只用一点小小的性能牺牲就极大地提高了一致性。然而,正式一致性和持久性保持不变。
  • 假如某些节点因为网络故障或是节点失效在当时是不可用的,更新最终也会通过反熵传播过程来传递到该节点。
  • (C) 在前一个模式中,使用提示移交技术可以更好地处理某个节点的操作失败。对于失效节点的预期更新被记录在额外的代理节点上,并且标明一旦特点节点可用就要将更新传递给该节点。这样做提高了一致性,降低了复制收敛时间。

    (D, 一次性读写)因为提示移交的责任节点也有可能在将更新传递出去之前就已经失效,在这种情况下就有必要通过所谓的读修复来保证一致性。每个读操作都会启动一个异步过程,向存储这条数据的所有节点请求一份数据摘要(像签名或者hash),如果发现各节点返回的摘要不一致则统一各节点上的数据版本。我们用一次性读写来命名组合了A、B、C、D的技术- 他们都没有提供严格的一致性保证,但是作为一个自备的方法已经可以用于实践了。

    人气教程排行