时间:2021-07-01 10:21:17 帮助过:2人阅读
一开始看错题了。。sad。
题目很简单,做法也很简单。DP一下就好了。
dp[i][0]:到当前位置,没有任何数改变,得到的长度。
dp[i][1]:到当前位置,改变了一个数,得到的长度
不过需要正向求一遍,然后反向求一遍。
#includeB:DZY Loves Modification#include #include#include #include using namespace std;#define maxn 110000int dp[maxn][3];int num[maxn];int a[maxn];int n;void dos(int maxx){ memset(dp,0,sizeof(dp)); memset(num,-1,sizeof(num)); for(int i=n; i>=1; i--) { if(a[i]=a[i+1]) { if(dp[i][1] a[i-1]) { dp[i][0]=dp[i-1][0]+1; } else { dp[i][0]=1; } dp[i][1]=dp[i][0]; num[i]=a[i]; if(a[i]>num[i-1]) { if(dp[i][1]
我们可以发现选择一个横行,竖行的大小顺序不变,只是每一个竖行都下降了p。
所以我们可以枚举选择了x个横行,y个竖行。
#include#include #include#include #include #include using namespace std;#define maxn 1100#define LL __int64int mp[maxn][maxn];int hh[maxn];int ll[maxn];LL ph[1100000];LL pl[1100000];priority_queue que;int n,m,k,p;void chu(){ ph[0]=pl[0]=0; while(!que.empty())que.pop(); for(int i=1;i<=n;i++) { que.push(hh[i]); } for(int i=1;i<=k;i++) { int x=que.top(); que.pop(); ph[i]=ph[i-1]+(LL)x; x=x-p*m; que.push(x); } while(!que.empty())que.pop(); for(int i=1;i<=m;i++) { que.push(ll[i]); } for(int i=1;i<=k;i++) { int x=que.top(); que.pop(); pl[i]=pl[i-1]+(LL)x; x=x-p*n; que.push(x); }}int main(){ while(~scanf("%d%d%d%d",&n,&m,&k,&p)) { memset(hh,0,sizeof(hh)); memset(ll,0,sizeof(ll)); for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { scanf("%d",&mp[i][j]); hh[i]+=mp[i][j]; ll[j]+=mp[i][j]; } } chu(); LL ans=pl[k]; for(int i=1;i<=k;i++) { LL x=(LL)i*(LL)(k-i); x=(LL)x*(LL)p; ans=max(ans,pl[k-i]+ph[i]-x); } cout 主要是两个性质:
1,两个斐波那契数列相加依然是一个斐波那契数列。
2,根据斐波那契数列的前两项可以O(1)的时间内得出任意一个位置的斐波那契数,和任意长度的斐波那契数列的合。
剩下的东西就是简单的区间求和问题了。
#include#include #include #include #include#include #include #include