当前位置:Gxlcms > html代码 > CodeforcesRound#225(Div.1)C树状数组||线段树_html/css_WEB-ITnose

CodeforcesRound#225(Div.1)C树状数组||线段树_html/css_WEB-ITnose

时间:2021-07-01 10:21:17 帮助过:16人阅读

看到这题很开心啊,有印象跟以前做过的很像,貌似最近就做过一个,以时间戳为区间来建立树状数组,然后一开始我以为题意是,给x点加val,它以下的所有节点都加-val;所以一开始就以 加 和 减 建立了两个树状数组,最后 减去就是答案,写完发现跟案例对不上啊,读了题目也没发现读错了,对于那句话 我理解错了,后来看了 这个:
http://blog.csdn.net/keshuai19940722/article/details/18967661
仔细看看处理部分,我还以为分奇偶性有规律呢,后来才发现读错题目了,原来是x点加val,与它直接相连的子节点加上-val,它的子节点的子节点又加上val,以此类推。。。哈哈。。哭

跟以前那类题目做法相同,对于这棵树,进行dfs,同时记录当前层数距离跟的关系,用奇偶数来表示,然后再以各个节点被dfs的时间戳 来建立区间 让树状数组映射上去,最后奇偶分开,加的在一个树状数组里,减去的在另一个里面,然后 最后求单点值的时候 就是自己这个点 所属的 距离根节点的关系,也就是自己应该加上的值,再减去对应的另一个树状数组里的应该减去的值,然后 一开始 各个节点本身具有的值 并没有加进树状数组里,还得加上原本具有的值,这样就是答案了

然后又用线段树做了一下,也是以时间戳来搞,同时记录这个节点距离根的奇偶性,然后也是建立两颗线段树,一个记录奇数处理,一个记录偶数处理,结果不知哪里写错了,又改了很久,不行又重新写了一下,真是学啥忘啥。。。

树状数组的:

int n;int m;int c[2][200000 * 2 + 55];typedef struct Node {	int l,r,val;	int now;};Node node[200000 + 55];vector G[200000 + 55];int cnt;void init() {	memset(c,0,sizeof(c));	for(int i=0;i<200000 + 55;i++)G[i].clear();}bool input() {	while(cin>>n>>m) {		for(int i=1;i<=n;i++)cin>>node[i].val;		int tmp = n - 1;		while(tmp--) {			int u,v;			scanf("%d %d",&u,&v);			G[u].push_back(v);			G[v].push_back(u);		}		return false;	}	return true;}int lowbit(int x) {	return x&(-x);}void add(int i,int val,int *aa) {	while(i <= 2 * n) {		aa[i] += val;		i += lowbit(i);	}}int get_sum(int i,int *aa) {	int sum = 0;	while(i > 0) {		sum += aa[i];		i -= lowbit(i);	}	return sum;}void dfs(int u,int pre,int tot) {	node[u].l = cnt++;	node[u].now = tot;	for(int i=0;i>type;		if(type == 1) {			int x,y;			cin>>x>>y;			//int tmp = node[x].now;			//int aa = node[x].l;			//int bb = node[x].r;			add(node[x].l,y,c[node[x].now]);			add(node[x].r + 1,-y,c[node[x].now]);		}		else {			int x;			cin>>x;			//int aa = (get_sum(node[x].l,c[node[x].d]) /*- get_sum(node[x].l - 1,c[node[x].d])*/);			//int bb = (get_sum(node[x].l,c[node[x].d^1])/* - get_sum(node[x].l - 1,c[node[x].d^1])*/);			//int cc = 0;			int ans = get_sum(node[x].l,c[node[x].now]) - get_sum(node[x].l,c[node[x].now^1]);			ans += node[x].val;			cout<  

线段树的:

const int N = 200000 + 55;int n;int m;int nnum[N + 55];int le[N + 55],ri[N + 55],belong[N + 55];int head[N + 55];typedef struct Node {	int l,r;	ll sum;	int lazy;};Node tree_even[N * 4 + 55],tree_odd[N * 4 + 55];typedef struct NODE {	int fro,to;	int nex;};NODE edge[2 * N + 55];int tot;int cnt;void add(int u,int v) {	edge[tot].fro = u;	edge[tot].to = v;	edge[tot].nex = head[u];	head[u] = tot++;}void dfs(int u,int pre,int d) {	le[u] = ++cnt;	for(int i=head[u];i!=-1;i=edge[i].nex) {		int v = edge[i].to;		if(v == pre)continue;		dfs(v,u,d^1);	}	belong[le[u]] = d;	ri[le[u]] = cnt;}void push_up(int id,Node *tree) {	tree[id].sum = tree[id<<1].sum + tree[id<<1|1].sum;}void push_down(int id,Node *tree) {	if(tree[id].lazy == 0)return ;	tree[id].sum += (tree[id].r - tree[id].l + 1) * tree[id].lazy;	if(tree[id].l == tree[id].r) {		tree[id].lazy = 0;		return ;	}	tree[id<<1].lazy += tree[id].lazy;	tree[id<<1|1].lazy += tree[id].lazy;	tree[id].lazy = 0;}void build(int l,int r,int id,Node *tree) {	tree[id].l = l;	tree[id].r = r;	tree[id].lazy = 0;	if(l == r) {		tree[id].sum = 0ll;		return ;	}	int mid = (l + r)>>1;	build(l,mid,id<<1,tree);	build(mid + 1,r,id<<1|1,tree);	push_up(id,tree);}void update(int l,int r,int id,ll val,Node *tree) {	if(tree[id].l == l && tree[id].r == r) {		tree[id].lazy += val;		push_down(id,tree);		return ;	}	push_down(id,tree);	int mid = (tree[id].l + tree[id].r)>>1;	if(r <= mid)update(l,r,id<<1,val,tree);	else if(l > mid)update(l,r,id<<1|1,val,tree);	else {		update(l,mid,id<<1,val,tree);		update(mid + 1,r,id<<1|1,val,tree);	}	push_up(id,tree);}ll query(int l,int r,int id,Node *tree) {	if(tree[id].l == l && tree[id].r == r) {		push_down(id,tree);		return tree[id].sum;	}	push_down(id,tree);	int mid = (tree[id].l + tree[id].r)>>1;	ll ret = 0ll;	if(r <= mid)ret += query(l,r,id<<1,tree);	else if(l > mid)ret += query(l,r,id<<1|1,tree);	else {		ret += query(l,mid,id<<1,tree);		ret += query(mid + 1,r,id<<1|1,tree);	}	return ret;}void init() {	memset(tree_even,0,sizeof(tree_even));	memset(tree_odd,0,sizeof(tree_odd));	memset(head,-1,sizeof(head));	tot = 1;	cnt = 0;}bool input() {	while(cin>>n>>m) {		for(int i=1;i<=n;i++)cin>>nnum[i];		for(int i=1;i>u>>v;			add(u,v);			add(v,u);		}		return false;	}	return true;}void cal() {	dfs(1,-1,1);	build(1,n,1,tree_even);	build(1,n,1,tree_odd);	while(m--) {		int type;		cin>>type;		if(type == 1) {			int x,y;			cin>>x>>y;			int left = le[x];			int right = ri[left];			if(belong[left]&1) update(left,right,1,y,tree_odd);			else update(left,right,1,y,tree_even);		}		else {			int x;			cin>>x;			int left = le[x];			ll ans;			if(belong[left]&1)				ans = query(left,left,1,tree_odd) - query(left,left,1,tree_even);			else				ans = query(left,left,1,tree_even) - query(left,left,1,tree_odd);			ans += nnum[x];			cout<                    

人气教程排行