时间:2021-07-01 10:21:17 帮助过:77人阅读
本文实例讲述了PHP进阶学习之Geo的地图定位算法。分享给大家供大家参考,具体如下:
前言
日常开发中我们经常需要查找某个物体的定位,或者查找附近的范围等,我们自然而然会想到的方法就是利用各种提供服务的地图网站的API,基于API,用经纬度去实现定位和查找附近范围等等。然而,由于原理没有做一个了解和一定的认识,在对比距离远近关系或者控制精确程度方面,我们并不了解怎么利用这些经纬度数值去实现距离转化和对比。本章节我们就来探讨一下基于geo的位置算法原理。
在实际应用中,如果要用两个维度去确定一个点,则计算量会很大,因为一个二维确定一个平面,如果我们把二维平面上的所有点都用一个数字表示,即经纬度换算成一个字符串,则可以转为一维坐标来表示,大大减少计算量。这就是现在应用广泛的geoHash。
geoHash:Geohash是公共领域地理编码系统,它将地理位置编码为一串字母和数字。Geohash提供了像任意精度这样的属性,以及逐渐从代码末尾删除字符以减小其大小(并逐渐失去精度)的可能性。由于逐步精度下降的结果,附近的地方往往(但不总是)呈现类似的前缀。共享前缀越长,两个地方越接近。
能将一个地球上的点表示成一串字母,并且相近的地点字母的共同前缀越多。这能让位置搜索在开发中变得很容易。它的原理就是依据上述说的geoHash值。下面就来详细说明geoHash值是怎么算出来的:
Geohash其实就是将整个地图或者某个分割所得的区域进行一次划分,由于采用的是base32编码方式,即Geohash中的每一个字母或者数字(如wx4g0e中的w)都是由5bits组成(2^5 = 32,base32),这5bits可以有32中不同的组合(0~31),这样我们可以将整个地图区域分为32个区域,通过00000 ~ 11111来标识这32个区域。第一次对地图划分后的情况如下图所示(每个区域中的编号对应于该区域所对应的编码):
进行多次分解后,我们就可以得到更精确的位置划分,如上述计算的wx4g已经可以精确到一个城市城区了:
从上图中可以看出,相邻城区的geoHash值的共同前缀越多,由此我们就可以应用共同前缀来判断附近相邻的位置了。当然精确范围也是根据经纬度和hash值的范围来确定的,如下表,geo精确到8位的共同前缀,可以表示附近约20米内的范围了:
在了解了geo的位置算法原理后,PHP开发过程中我们便可以使用这一定位功能,目前解决位置定位和搜索功能的方案有很多种,基于PHP的,从本人自身实践中推荐一下几种:
$redis->geoRadius($key, $longitude, $latitude, $radius, $unit [, Array $options]);
private $coding = '0123456789bcdefghjkmnpqrstuvwxyz'; /** * calculate geoHash by longitude and latitude * @param $lat * @param $long * @return string */ public function calcGeoHash($lat,$long) { $plat=$this->precision($lat); $latbits=1; $err=45; while($err>$plat) { $latbits++; $err/=2; } $plong=$this->precision($long); $longbits=1; $err=90; while($err>$plong) { $longbits++; $err/=2; } $bits=max($latbits,$longbits); $longbits=$bits; $latbits=$bits; $addlong=1; while (($longbits+$latbits)%5 != 0) { $longbits+=$addlong; $latbits+=!$addlong; $addlong=!$addlong; } $blat=$this->binEncode($lat,-90,90, $latbits); $blong=$this->binEncode($long,-180,180,$longbits); $binary=''; $uselong=1; while (strlen($blat)+strlen($blong)) { if ($uselong) { $binary=$binary.substr($blong,0,1); $blong=substr($blong,1); } else { $binary=$binary.substr($blat,0,1); $blat=substr($blat,1); } $uselong=!$uselong; } $hash=''; for ($i=0; $i<strlen($binary); $i+=5) { $n=bindec(substr($binary,$i,5)); $hash=$hash.$this->coding[$n]; } return $hash; } /** * @param $number * @return float|int */ private function precision($number) { $precision=0; $pt=strpos($number,'.'); if ($pt!==false) { $precision=-(strlen($number)-$pt-1); } return pow(10,$precision)/2; } /** * @param $number * @param $min * @param $max * @param $bitcount * @return string */ private function binEncode($number, $min, $max, $bitcount) { if ($bitcount==0) return ''; $mid=($min+$max)/2; if ($number>$mid) return '1'.$this->binEncode($number, $mid, $max,$bitcount-1); else return '0'.$this->binEncode($number, $min, $mid,$bitcount-1); }
GeoHash算法是一种将二维坐标换算成一位字符串的算法,可以通过不同字符串的共同前缀来判断相距远近。在日常业务中也常常需要用到,本文也介绍了不同的实现方法,具体实现方案还需以实际业务需要为准。如果属于精确度要求很高或者企业级的大规模应用,可以首先考虑MongoDB或者其他提供Geo功能的存储组件,如果较为轻量级,可以借助第三方地区API、或者利用redis做geo的简单应用。如果业务需求复杂度不高,在这里并不推荐直接使用PHP写,毕竟效率会比较低,而且这也不是业务关注的重点,所以没必要重新造轮子。
更多关于PHP相关内容感兴趣的读者可查看本站专题:《php面向对象程序设计入门教程》、《PHP数组(Array)操作技巧大全》、《PHP基本语法入门教程》、《PHP运算与运算符用法总结》、《php字符串(string)用法总结》、《php+mysql数据库操作入门教程》及《php常见数据库操作技巧汇总》
希望本文所述对大家PHP程序设计有所帮助。