当前位置:Gxlcms > PHP教程 > PHP计算余弦相似度算法实例

PHP计算余弦相似度算法实例

时间:2021-07-01 10:21:17 帮助过:66人阅读

本文主要介绍PHP数据分析引擎计算余弦相似度算法,结合具体实例形式分析了php计算余弦相似度的操作步骤与相关实现技巧,需要的朋友可以参考下,希望能帮助到大家。

关于余弦相似度的相关介绍可参考百度百科:余弦相似度


<?php
/**
 * 数据分析引擎
 * 分析向量的元素 必须和基准向量的元素一致,取最大个数,分析向量不足元素以0填补。
 * 求出分析向量与基准向量的余弦值
 * @author yu.guo@okhqb.com
 */
/**
 * 获得向量的模
 * @param unknown_type $array 传入分析数据的基准点的N维向量。|eg:array(1,1,1,1,1);
 */
function getMarkMod($arrParam){
 $strModDouble = 0;
 foreach($arrParam as $val){
 $strModDouble += $val * $val;
 }
 $strMod = sqrt($strModDouble);
 //是否需要保留小数点后几位
 return $strMod;
}
/**
 * 获取标杆的元素个数
 * @param unknown_type $arrParam
 * @return number
 */
function getMarkLenth($arrParam){
 $intLenth = count($arrParam);
 return $intLenth;
}
/**
 * 对传入数组进行索引分配,基准点的索引必须为k,求夹角的向量索引必须为 'j'.
 * @param unknown_type $arrParam
 * @param unknown_type $index
 * @ruturn $arrBack
 */
function handIndex($arrParam, $index = 'k'){
 foreach($arrParam as $key => $val){
  $in = $index.$key;
  $arrBack[$in] = $val;
 }
 return $arrBack;
}
/**
 *
 * @param unknown_type $arrMark标杆向量数组(索引被处理过)
 * @param unknown_type $arrAnaly 分析向量数组 (索引被处理过) |array('j0'=>1,'j1'=>2....)
 * @param unknown_type $strMarkMod标杆向量的模
 * @param unknown_type $intLenth 向量的长度
 */
function getCosine($arrMark, $arrAnaly, $strMarkMod ,$intLenth){
 $strVector = 0;
 $strCosine = 0;
 for($i = 0; $i < $intLenth; $i++){
 $strMarkVal = $arrMark['k'.$i];
 $strAnalyVal = $arrAnaly['j'.$i];
 $strVector += $strMarkVal * $strAnalyVal;
 }
 $arrAnalyMod = getMarkMod($arrAnaly); //求分析向量的模
 $strFenzi = $strVector;
 $strFenMu = $arrAnalyMod * $strMarkMod;
 $strCosine = $strFenzi / $strFenMu;
 if(0 !== (int)$strFenMu){
 $strCosine = $strFenzi / $strFenMu;
 }
 return $strCosine;
}
?>

以上就是PHP计算余弦相似度算法实例的详细内容,更多请关注Gxl网其它相关文章!

人气教程排行