当前位置:Gxlcms > JavaScript > JS基于贪心算法解决背包问题

JS基于贪心算法解决背包问题

时间:2021-07-01 10:21:17 帮助过:10人阅读

前面我们分享了关于js使用贪心算法解决找零问题,本文我们接着为大家介绍JS基于贪心算法解决背包问题。

贪心算法:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。寻找最优解的过程,目的是得到当前最优解。

部分背包问题:固定容积的背包能放入物品的总最大价值

物品 A B C D
价格 50 220 60 60
尺寸 5 20 10 12
比率 10 11 6 5

按比例降序尽可能多放入物品

function greedy(values, weights, capacity){
  var returnValue = 0
  var remainCapacity = capacity
  var sortArray = []
  values.map((cur, index) =>{
    sortArray.push({
      'value': values[index],
      'weight': weights[index],
      'ratio': values[index]/weights[index]
    })
  })
  sortArray.sort(function(a, b){
    return b.ratio > a.ratio
  })
  console.log(sortArray)
  sortArray.map((cur,index) => {
    var num = parseInt(remainCapacity/cur.weight)
    console.log(num)
    remainCapacity -= num*cur.weight
    returnValue += num*cur.value
  })
  return returnValue
}
var items = ['A','B','C','D']
var values = [50,220,60,60]
var weights = [5,20,10,12]
var capacity = 32 //背包容积
greedy(values, weights, capacity) // 320

相关推荐:

JS如何使用贪心算法解决找零问题

php实现贪心算法0-1背包问题

Java如何实现背包算法的实例分析

以上就是JS基于贪心算法解决背包问题的详细内容,更多请关注Gxl网其它相关文章!

人气教程排行