当前位置:Gxlcms > JavaScript > JavaScript基于牛顿迭代法实现求浮点数的平方根实例分析

JavaScript基于牛顿迭代法实现求浮点数的平方根实例分析

时间:2021-07-01 10:21:17 帮助过:11人阅读

这篇文章主要介绍了javascript基于牛顿迭代法实现求浮点数的平方根,简单说明了牛顿迭代法的原理,并结合实例分析了javascript基于递归的数值运算相关操作技巧,需要的朋友可以参考下

本文实例讲述了javascript基于牛顿迭代法实现求浮点数的平方根。分享给大家供大家参考,具体如下:

今天在网上看到一则利用牛顿迭代法求浮点数的平方根的方法,发现很好,比一些语言自带的sqrt方法运行要快,在这里备份一下,以待后用,这里稍微做了些改动.

首先是牛顿迭代法原理:

比如我们要求a的平方根,首先随便猜一个近似值x,然后不断令x等于x和a/x的平均数,迭代几次后x的值就已经相当精确了。

如我们要求的数学假设为 a=7, var x=a;

( 7 + 7/7 ) / 2 = 3.64287514
( 3.64287514 + 7/3.64287514 ) / 2 = ?
..
..

下面是利用JavaScript实现


运行

G.sqrt(16) : 结果为4
G.sqrt(2) : 结果为1.414
G.sqrt(100.2565)

当然,网上对牛顿迭代法的算法好像还有其他实现,读者可以根据需要选择适合自己理解的方法.

以上就是JavaScript基于牛顿迭代法实现求浮点数的平方根实例分析的详细内容,更多请关注Gxl网其它相关文章!

人气教程排行