时间:2021-07-01 10:21:17 帮助过:36人阅读
一、熟悉概念
中缀表示法(或中缀记法)是一个通用的算术或逻辑公式表示方法, 操作符是以中缀形式处于操作数的中间(例:3 + 4)。也就是我们最常用的算术表达式,中缀表达式对于人类来说比较容易理解,但是不易于计算机解析。
逆波兰表示法(Reverse Polish notation,RPN,或逆波兰记法),是一种是由波兰数学家扬·武卡谢维奇1920年引入的数学表达式方式,在逆波兰记法中,所有操作符置于操作数的后面,因此也被称为后缀表示法。逆波兰记法不需要括号来标识操作符的优先级。逆波兰表示法容易使用堆栈结构对表达式进行解析并计算,所以,这里我们解析四则元素表达式,是先从中缀表达式,转换为逆波兰表达式。然后再计算值。
二、转换流程
中缀表达式转换为后缀表达式(调度场算法)
1.输入队列弹出一个记号
2.如果记号为数字,添加到输出队列中
3.如果是一个操作符(+-*/)则比较它与输出堆栈中栈顶的操作符,如果优先级小于或等于栈顶的操作符,那么将栈顶的操作符弹出并加入输出队列(循环,直到上述条件不满足),最后将本次的操作符压入堆栈。
4.如果是一个左括号,压入堆栈
5.如果是一个右括号,从栈中不断的弹出操作符,并加入输出队列,知道栈顶的元素为左括号。弹出左括号,不加入输出队列。如果没有发现左括号,说明原来的表达式中括号不对称,有错误。
6.如果输入队列为空,而栈中尚有操作符时,如果栈顶的操作符为左括号,则说明原表达式有不匹配的括号。将栈中的操作符逐个弹出,加入输出队列。
7.完成
三、转换代码实现
四、逆波兰表达式求值
1.从输入队列中弹出一个记号
2.如果是操作数,加入输出堆栈
3.如果是一个操作符,从输出堆栈中弹出两个操作数并进行计算,并将计算得到的值压入输出堆栈。
4.循环操作,如果输入队列为空,且输出堆栈只有一个数则这个数为结果,否则是出现了多余的操作数。
五、计算代码
六、结语
逆波兰表示法,在初次接触的时候感觉不太习惯,但是熟悉之后,会发现,其实思路特别简单,不像中缀表示法,还有各种优先级啊,还有小括号之类的,逻辑特别麻烦,还是逆波兰表示法比较简洁,完全不用考虑优先级,也没用小括号,中括号还有大括号搅局。